Properties

Label 405600n
Number of curves $1$
Conductor $405600$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 405600n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
405600.n1 405600n1 \([0, -1, 0, -73233, 7302177]\) \(520000/27\) \(2255332297420800\) \([]\) \(2156544\) \(1.7035\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 405600n1 has rank \(2\).

Complex multiplication

The elliptic curves in class 405600n do not have complex multiplication.

Modular form 405600.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4q^{7} + q^{9} + q^{11} + 2q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display