Properties

Label 405600fe2
Conductor $405600$
Discriminant $2.382\times 10^{20}$
j-invariant \( \frac{1360251712}{771147} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3+x^2-1560433x+106563263\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3+x^2z-1560433xz^2+106563263z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-126395100x+78063804000\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 1, 0, -1560433, 106563263])
 
Copy content gp:E = ellinit([0, 1, 0, -1560433, 106563263])
 
Copy content magma:E := EllipticCurve([0, 1, 0, -1560433, 106563263]);
 
Copy content oscar:E = elliptic_curve([0, 1, 0, -1560433, 106563263])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(-61, 14196)$$2.6644208994957006883006250177$$\infty$
$(1213, 0)$$0$$2$

Integral points

\((-61,\pm 14196)\), \( \left(1213, 0\right) \) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 405600 \) = $2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $238219473915072000000$ = $2^{12} \cdot 3^{3} \cdot 5^{6} \cdot 13^{10} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( \frac{1360251712}{771147} \) = $2^{6} \cdot 3^{-3} \cdot 13^{-4} \cdot 277^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $2.5999099772971999257227063362$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $-0.18043083821056393902164917265$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $1.069422794221752$
Szpiro ratio: $\sigma_{m}$ ≈ $4.212383520241738$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 1$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 1$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ ≈ $2.6644208994957006883006250177$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.15140117539046324399708177032$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 96 $  = $ 2^{2}\cdot3\cdot2\cdot2^{2} $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $2$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L'(E,1)$ ≈ $9.6815149420455460667456938459 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  ≈  $1$    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 9.681514942 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.151401 \cdot 2.664421 \cdot 96}{2^2} \\ & \approx 9.681514942\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 1, 0, -1560433, 106563263]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 1, 0, -1560433, 106563263]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 405600.2.a.fe

\( q + q^{3} + q^{9} - 4 q^{11} + 6 q^{17} + 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 16515072
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: not computed* (one of 2 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 405600fe1 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$2$ $4$ $I_{3}^{*}$ additive -1 5 12 0
$3$ $3$ $I_{3}$ split multiplicative -1 1 3 3
$5$ $2$ $I_0^{*}$ additive 1 2 6 0
$13$ $4$ $I_{4}^{*}$ additive 1 2 10 4

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[479, 1240, 980, 279], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [623, 0, 0, 1559], [1056, 905, 265, 876], [1553, 8, 1552, 9], [7, 6, 1554, 1555], [836, 625, 1375, 6], [1451, 510, 1370, 1211]] GL(2,Integers(1560)).subgroup(gens)
 
Copy content magma:Gens := [[479, 1240, 980, 279], [1, 0, 8, 1], [1, 8, 0, 1], [1, 4, 4, 17], [623, 0, 0, 1559], [1056, 905, 265, 876], [1553, 8, 1552, 9], [7, 6, 1554, 1555], [836, 625, 1375, 6], [1451, 510, 1370, 1211]]; sub<GL(2,Integers(1560))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 479 & 1240 \\ 980 & 279 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 623 & 0 \\ 0 & 1559 \end{array}\right),\left(\begin{array}{rr} 1056 & 905 \\ 265 & 876 \end{array}\right),\left(\begin{array}{rr} 1553 & 8 \\ 1552 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1554 & 1555 \end{array}\right),\left(\begin{array}{rr} 836 & 625 \\ 1375 & 6 \end{array}\right),\left(\begin{array}{rr} 1451 & 510 \\ 1370 & 1211 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[1560])$ is a degree-$19322634240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ additive $2$ \( 12675 = 3 \cdot 5^{2} \cdot 13^{2} \)
$3$ split multiplicative $4$ \( 135200 = 2^{5} \cdot 5^{2} \cdot 13^{2} \)
$5$ additive $14$ \( 16224 = 2^{5} \cdot 3 \cdot 13^{2} \)
$13$ additive $98$ \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 405600fe consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 1248h3, its twist by $65$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.