Properties

Label 405600bi
Number of curves $2$
Conductor $405600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("bi1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 405600bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
405600.bi2 405600bi1 \([0, -1, 0, -297158, -103322688]\) \(-601211584/609375\) \(-2941336734375000000\) \([2]\) \(7741440\) \(2.2393\) \(\Gamma_0(N)\)-optimal*
405600.bi1 405600bi2 \([0, -1, 0, -5578408, -5067697688]\) \(497169541448/190125\) \(7341576489000000000\) \([2]\) \(15482880\) \(2.5859\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 405600bi1.

Rank

sage: E.rank()
 

The elliptic curves in class 405600bi have rank \(1\).

Complex multiplication

The elliptic curves in class 405600bi do not have complex multiplication.

Modular form 405600.2.a.bi

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2q^{7} + q^{9} + 4q^{11} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.