Properties

Label 405600a1
Conductor $405600$
Discriminant $-1.506\times 10^{18}$
j-invariant \( \frac{175616}{4875} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, 78867, 58397637])
 
gp: E = ellinit([0, -1, 0, 78867, 58397637])
 
magma: E := EllipticCurve([0, -1, 0, 78867, 58397637]);
 

\(y^2=x^3-x^2+78867x+58397637\)  Toggle raw display

Mordell-Weil group structure

$\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(1907, 84500\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $0.62575786546462664677230401106$

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((412,\pm 12675)\), \((1907,\pm 84500)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 405600 \)  =  $2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-1505964408000000000 $  =  $-1 \cdot 2^{12} \cdot 3 \cdot 5^{9} \cdot 13^{7} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{175616}{4875} \)  =  $2^{9} \cdot 3^{-1} \cdot 5^{-3} \cdot 7^{3} \cdot 13^{-1}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.1680914166525792874726725171\dots$
Stable Faltings height: $-0.61224939885518457727168299175\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.62575786546462664677230401106\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.20182269851400096836826329199\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2\cdot1\cdot2^{2}\cdot2^{2} $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $1$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 4.0413485127818279112689569571472089140 $

Modular invariants

Modular form 405600.2.a.a

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} - 5q^{7} + q^{9} + q^{11} - 3q^{17} - 6q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 7741440
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive 1 5 12 0
$3$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1
$5$ $4$ $I_3^{*}$ Additive 1 2 9 3
$13$ $4$ $I_1^{*}$ Additive 1 2 7 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$.

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has no rational isogenies. Its isogeny class 405600a consists of this curve only.