# Properties

 Label 405600.gq Number of curves $2$ Conductor $405600$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("gq1")

sage: E.isogeny_class()

## Elliptic curves in class 405600.gq

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
405600.gq1 405600gq2 $$[0, 1, 0, -41968, 1064168]$$ $$26463592/13689$$ $$4228748057664000$$ $$$$ $$2408448$$ $$1.6904$$
405600.gq2 405600gq1 $$[0, 1, 0, -33518, 2348568]$$ $$107850176/117$$ $$4517893224000$$ $$$$ $$1204224$$ $$1.3438$$ $$\Gamma_0(N)$$-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 405600.gq1.

## Rank

sage: E.rank()

The elliptic curves in class 405600.gq have rank $$0$$.

## Complex multiplication

The elliptic curves in class 405600.gq do not have complex multiplication.

## Modular form 405600.2.a.gq

sage: E.q_eigenform(10)

$$q + q^{3} + 4q^{7} + q^{9} - 2q^{11} + 2q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 