Properties

Label 405600.bg2
Conductor $405600$
Discriminant $-1.487\times 10^{25}$
j-invariant \( -\frac{9045718037056}{48125390625} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -29344033, 195347817937])
 
gp: E = ellinit([0, -1, 0, -29344033, 195347817937])
 
magma: E := EllipticCurve([0, -1, 0, -29344033, 195347817937]);
 

\(y^2=x^3-x^2-29344033x+195347817937\)  Toggle raw display

Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(7757, 659100\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $2.6751401618918830320608874316$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-7453, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-7453, 0\right) \), \((7757,\pm 659100)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 405600 \)  =  $2^{5} \cdot 3 \cdot 5^{2} \cdot 13^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-14866692390225000000000000 $  =  $-1 \cdot 2^{12} \cdot 3^{6} \cdot 5^{14} \cdot 13^{8} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{9045718037056}{48125390625} \)  =  $-1 \cdot 2^{6} \cdot 3^{-6} \cdot 5^{-8} \cdot 13^{-2} \cdot 5209^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $3.5142595571768281898258011241\dots$
Stable Faltings height: $0.73391874166906432508144561525\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $2.6751401618918830320608874316\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.060721509828964816649825221023\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 128 $  = $ 2^{2}\cdot2\cdot2^{2}\cdot2^{2} $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 5.1980335882936482039526733203440569250 $

Modular invariants

Modular form 405600.2.a.bg

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} - 2q^{7} + q^{9} + 2q^{11} + 2q^{17} + 2q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 74317824
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_3^{*}$ Additive 1 5 12 0
$3$ $2$ $I_{6}$ Non-split multiplicative 1 1 6 6
$5$ $4$ $I_8^{*}$ Additive 1 2 14 8
$13$ $4$ $I_2^{*}$ Additive 1 2 8 2

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.5

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 405600.bg consists of 2 curves linked by isogenies of degree 2.