Properties

Label 4056.m
Number of curves $4$
Conductor $4056$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 4056.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4056.m1 4056f3 \([0, 1, 0, -140664, -20352864]\) \(62275269892/39\) \(192763444224\) \([2]\) \(10752\) \(1.4856\)  
4056.m2 4056f2 \([0, 1, 0, -8844, -316224]\) \(61918288/1521\) \(1879443581184\) \([2, 2]\) \(5376\) \(1.1390\)  
4056.m3 4056f1 \([0, 1, 0, -1239, 9270]\) \(2725888/1053\) \(81322078032\) \([4]\) \(2688\) \(0.79245\) \(\Gamma_0(N)\)-optimal
4056.m4 4056f4 \([0, 1, 0, 1296, -989520]\) \(48668/85683\) \(-423501286960128\) \([2]\) \(10752\) \(1.4856\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4056.m have rank \(0\).

Complex multiplication

The elliptic curves in class 4056.m do not have complex multiplication.

Modular form 4056.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - 2 q^{15} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.