Properties

Label 4050.x
Number of curves $2$
Conductor $4050$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 4050.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4050.x1 4050bb2 \([1, -1, 1, -5225, 151977]\) \(-1557792607653/67108864\) \(-679477248000\) \([]\) \(6240\) \(1.0362\)  
4050.x2 4050bb1 \([1, -1, 1, -50, -123]\) \(-1339893/4\) \(-40500\) \([]\) \(480\) \(-0.24627\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4050.x have rank \(1\).

Complex multiplication

The elliptic curves in class 4050.x do not have complex multiplication.

Modular form 4050.2.a.x

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{7} + q^{8} - 2 q^{11} - 6 q^{13} - q^{14} + q^{16} - 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 13 \\ 13 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.