# Properties

 Label 405.e1 Conductor $405$ Discriminant $-6328125$ j-invariant $$-\frac{15590912409}{78125}$$ CM no Rank $1$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2+xy=x^3-x^2-225x-1250$$ y^2+xy=x^3-x^2-225x-1250 (homogenize, simplify) $$y^2z+xyz=x^3-x^2z-225xz^2-1250z^3$$ y^2z+xyz=x^3-x^2z-225xz^2-1250z^3 (dehomogenize, simplify) $$y^2=x^3-3603x-83602$$ y^2=x^3-3603x-83602 (homogenize, minimize)

sage: E = EllipticCurve([1, -1, 0, -225, -1250])

gp: E = ellinit([1, -1, 0, -225, -1250])

magma: E := EllipticCurve([1, -1, 0, -225, -1250]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(18, 8\right)$$ (18, 8) $\hat{h}(P)$ ≈ $3.2742022972571501921033351837$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(18, 8\right)$$, $$\left(18, -26\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$405$$ = $3^{4} \cdot 5$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-6328125$ = $-1 \cdot 3^{4} \cdot 5^{7}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{15590912409}{78125}$$ = $-1 \cdot 3^{2} \cdot 5^{-7} \cdot 1201^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.15236521624925116198649189908\dots$ Stable Faltings height: $-0.21383887997345206847858984656\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $3.2742022972571501921033351837\dots$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $0.61603207917456826852330912889\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $2.0170136488174700562838887677$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{4} - q^{5} - 3 q^{7} - 3 q^{8} - q^{10} - 2 q^{11} - 2 q^{13} - 3 q^{14} - q^{16} + 4 q^{17} - 8 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 84 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $1$ $II$ Additive 1 4 4 0
$5$ $1$ $I_{7}$ Non-split multiplicative 1 1 7 7

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$7$ 7B.2.3 7.16.0.2

The image of the adelic Galois representation has level $1260$, index $96$, and genus $2$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ord add nonsplit ord ord ord ord ord ord ord ss ord ord ord ord 1 - 5 7 1 1 1 3 1 1 1,1 1 1 1 1 0 - 0 1 0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 7.
Its isogeny class 405.e consists of 2 curves linked by isogenies of degree 7.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.1620.1 $$\Z/2\Z$$ Not in database $6$ 6.0.52488000.2 $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $6$ 6.0.110270727.1 $$\Z/7\Z$$ Not in database $8$ 8.2.110716875.1 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database $18$ 18.0.85814502186767229614757312000000.2 $$\Z/14\Z$$ Not in database $21$ 21.3.108608979330127274981177223.1 $$\Z/7\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.