Show commands for:
SageMath
sage: E = EllipticCurve("bb1")
sage: E.isogeny_class()
Elliptic curves in class 4032.bb
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
4032.bb1 | 4032g3 | [0, 0, 0, -10764, -429840] | [2] | 4096 | |
4032.bb2 | 4032g4 | [0, 0, 0, -2124, 29808] | [2] | 4096 | |
4032.bb3 | 4032g2 | [0, 0, 0, -684, -6480] | [2, 2] | 2048 | |
4032.bb4 | 4032g1 | [0, 0, 0, 36, -432] | [2] | 1024 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4032.bb have rank \(0\).
Complex multiplication
The elliptic curves in class 4032.bb do not have complex multiplication.Modular form 4032.2.a.bb
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.