# Properties

 Label 4032.bb Number of curves $4$ Conductor $4032$ CM no Rank $0$ Graph # Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bb1")

sage: E.isogeny_class()

## Elliptic curves in class 4032.bb

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4032.bb1 4032g3 $$[0, 0, 0, -10764, -429840]$$ $$1443468546/7$$ $$668860416$$ $$$$ $$4096$$ $$0.89385$$
4032.bb2 4032g4 $$[0, 0, 0, -2124, 29808]$$ $$11090466/2401$$ $$229419122688$$ $$$$ $$4096$$ $$0.89385$$
4032.bb3 4032g2 $$[0, 0, 0, -684, -6480]$$ $$740772/49$$ $$2341011456$$ $$[2, 2]$$ $$2048$$ $$0.54727$$
4032.bb4 4032g1 $$[0, 0, 0, 36, -432]$$ $$432/7$$ $$-83607552$$ $$$$ $$1024$$ $$0.20070$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 4032.bb have rank $$0$$.

## Complex multiplication

The elliptic curves in class 4032.bb do not have complex multiplication.

## Modular form4032.2.a.bb

sage: E.q_eigenform(10)

$$q + 2q^{5} - q^{7} - 4q^{11} - 2q^{13} + 6q^{17} - 8q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 