Show commands:
SageMath
E = EllipticCurve("w1")
E.isogeny_class()
Elliptic curves in class 40310.w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
40310.w1 | 40310u2 | \([1, -1, 1, -2113, 33281]\) | \(1042868381560929/140077250000\) | \(140077250000\) | \([2]\) | \(55296\) | \(0.86625\) | |
40310.w2 | 40310u1 | \([1, -1, 1, 207, 2657]\) | \(985371912351/3740768000\) | \(-3740768000\) | \([2]\) | \(27648\) | \(0.51968\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 40310.w have rank \(0\).
Complex multiplication
The elliptic curves in class 40310.w do not have complex multiplication.Modular form 40310.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.