Show commands:
SageMath
E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 40310.v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
40310.v1 | 40310p2 | \([1, -1, 1, -343, -1633]\) | \(4450599366849/1299916880\) | \(1299916880\) | \([2]\) | \(19200\) | \(0.45481\) | |
40310.v2 | 40310p1 | \([1, -1, 1, 57, -193]\) | \(20819570751/25798400\) | \(-25798400\) | \([2]\) | \(9600\) | \(0.10823\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 40310.v have rank \(0\).
Complex multiplication
The elliptic curves in class 40310.v do not have complex multiplication.Modular form 40310.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.