Show commands:
SageMath
E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 40310.u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
40310.u1 | 40310y2 | \([1, 1, 1, -2357270, -1711540605]\) | \(-1448610774532009781827681/425719930023619660400\) | \(-425719930023619660400\) | \([]\) | \(1536000\) | \(2.6729\) | |
40310.u2 | 40310y1 | \([1, 1, 1, -19270, 9820995]\) | \(-791353021095715681/41277440000000000\) | \(-41277440000000000\) | \([5]\) | \(307200\) | \(1.8682\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 40310.u have rank \(1\).
Complex multiplication
The elliptic curves in class 40310.u do not have complex multiplication.Modular form 40310.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.