Properties

Label 40310.a
Number of curves $2$
Conductor $40310$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 40310.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
40310.a1 40310a2 \([1, 0, 1, -12374, -530328]\) \(209509438914704089/216964544000\) \(216964544000\) \([]\) \(97200\) \(1.0930\)  
40310.a2 40310a1 \([1, 0, 1, -559, 4266]\) \(19268230993129/3115318040\) \(3115318040\) \([3]\) \(32400\) \(0.54372\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 40310.a have rank \(0\).

Complex multiplication

The elliptic curves in class 40310.a do not have complex multiplication.

Modular form 40310.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} + q^{4} - q^{5} + 2 q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 6 q^{11} - 2 q^{12} - q^{13} + q^{14} + 2 q^{15} + q^{16} - q^{18} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.