Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 40310.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
40310.a1 | 40310a2 | \([1, 0, 1, -12374, -530328]\) | \(209509438914704089/216964544000\) | \(216964544000\) | \([]\) | \(97200\) | \(1.0930\) | |
40310.a2 | 40310a1 | \([1, 0, 1, -559, 4266]\) | \(19268230993129/3115318040\) | \(3115318040\) | \([3]\) | \(32400\) | \(0.54372\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 40310.a have rank \(0\).
Complex multiplication
The elliptic curves in class 40310.a do not have complex multiplication.Modular form 40310.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.