Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
40310.a1 |
40310a2 |
40310.a |
40310a |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( 2^{9} \cdot 5^{3} \cdot 29^{3} \cdot 139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$483720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$97200$ |
$1.093027$ |
$209509438914704089/216964544000$ |
$0.92769$ |
$3.76105$ |
$[1, 0, 1, -12374, -530328]$ |
\(y^2+xy+y=x^3-12374x-530328\) |
3.8.0-3.a.1.1, 161240.2.0.?, 483720.16.0.? |
$[]$ |
40310.a2 |
40310a1 |
40310.a |
40310a |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( 2^{3} \cdot 5 \cdot 29 \cdot 139^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$483720$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$32400$ |
$0.543721$ |
$19268230993129/3115318040$ |
$0.82606$ |
$2.88461$ |
$[1, 0, 1, -559, 4266]$ |
\(y^2+xy+y=x^3-559x+4266\) |
3.8.0-3.a.1.2, 161240.2.0.?, 483720.16.0.? |
$[]$ |
40310.b1 |
40310o1 |
40310.b |
40310o |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{4} \cdot 5^{2} \cdot 29^{3} \cdot 139 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.319655334$ |
$1$ |
|
$16$ |
$25344$ |
$0.446184$ |
$-1138220196121/1356028400$ |
$0.81588$ |
$2.72326$ |
$[1, 1, 0, -217, 2069]$ |
\(y^2+xy=x^3+x^2-217x+2069\) |
8062.2.0.? |
$[(-10, 63), (47/2, 243/2)]$ |
40310.c1 |
40310i1 |
40310.c |
40310i |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{4} \cdot 29 \cdot 139 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.297665603$ |
$1$ |
|
$16$ |
$17408$ |
$0.362533$ |
$-74730178537561/10077500$ |
$0.83356$ |
$3.01245$ |
$[1, 1, 0, -877, 9641]$ |
\(y^2+xy=x^3+x^2-877x+9641\) |
8062.2.0.? |
$[(17, -6), (22, 29)]$ |
40310.d1 |
40310n1 |
40310.d |
40310n |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{10} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.388924859$ |
$1$ |
|
$6$ |
$35840$ |
$0.857268$ |
$-163094409140843881/103193600$ |
$0.95283$ |
$3.73744$ |
$[1, 1, 0, -11382, 462676]$ |
\(y^2+xy=x^3+x^2-11382x+462676\) |
8062.2.0.? |
$[(60, -14)]$ |
40310.e1 |
40310h1 |
40310.e |
40310h |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{18} \cdot 5^{12} \cdot 29 \cdot 139 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$1.419518105$ |
$1$ |
|
$10$ |
$470016$ |
$2.024273$ |
$84283409662303196519/257984000000000000$ |
$0.93845$ |
$4.46390$ |
$[1, 1, 0, 91343, -21968299]$ |
\(y^2+xy=x^3+x^2+91343x-21968299\) |
8062.2.0.? |
$[(322, 6239), (763/2, 11737/2)]$ |
40310.f1 |
40310m1 |
40310.f |
40310m |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{6} \cdot 5^{6} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.507305607$ |
$1$ |
|
$6$ |
$27648$ |
$0.537923$ |
$-3710197529641/4031000000$ |
$0.82529$ |
$2.82893$ |
$[1, 1, 0, -322, -3916]$ |
\(y^2+xy=x^3+x^2-322x-3916\) |
8062.2.0.? |
$[(28, 86)]$ |
40310.g1 |
40310g1 |
40310.g |
40310g |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{8} \cdot 29 \cdot 139 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.414556588$ |
$1$ |
|
$16$ |
$21504$ |
$0.566355$ |
$5052146350679/6298437500$ |
$0.83037$ |
$2.77191$ |
$[1, 1, 0, 358, 2944]$ |
\(y^2+xy=x^3+x^2+358x+2944\) |
8062.2.0.? |
$[(18, 116), (37/3, 1757/3)]$ |
40310.h1 |
40310l1 |
40310.h |
40310l |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{2} \cdot 29^{5} \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.480523757$ |
$1$ |
|
$6$ |
$46080$ |
$0.925225$ |
$-1722864296274841/285104971100$ |
$0.86046$ |
$3.33205$ |
$[1, 1, 0, -2497, -55519]$ |
\(y^2+xy=x^3+x^2-2497x-55519\) |
8062.2.0.? |
$[(100, 791)]$ |
40310.i1 |
40310j1 |
40310.i |
40310j |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{34} \cdot 5^{2} \cdot 29^{3} \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$21.75399893$ |
$1$ |
|
$0$ |
$1175040$ |
$2.561111$ |
$-31934099190271784872597561/1456024407611801600$ |
$1.00829$ |
$5.53789$ |
$[1, 1, 0, -6609627, -6543551459]$ |
\(y^2+xy=x^3+x^2-6609627x-6543551459\) |
8062.2.0.? |
$[(1878096138342/16231, 2360570523481048699/16231)]$ |
40310.j1 |
40310c1 |
40310.j |
40310c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{14} \cdot 5^{2} \cdot 29^{3} \cdot 139^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$24186$ |
$16$ |
$0$ |
$3.093824283$ |
$1$ |
|
$2$ |
$370944$ |
$2.055485$ |
$-18891165411761705909209/26828620509593600$ |
$0.94209$ |
$4.83720$ |
$[1, 0, 1, -554854, 159228856]$ |
\(y^2+xy+y=x^3-554854x+159228856\) |
3.8.0-3.a.1.2, 8062.2.0.?, 24186.16.0.? |
$[(4381/3, 50951/3)]$ |
40310.j2 |
40310c2 |
40310.j |
40310c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{42} \cdot 5^{6} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$24186$ |
$16$ |
$0$ |
$9.281472851$ |
$1$ |
|
$0$ |
$1112832$ |
$2.604790$ |
$55679563269984774587831/277008210722816000000$ |
$0.96742$ |
$5.13012$ |
$[1, 0, 1, 795531, 752817792]$ |
\(y^2+xy+y=x^3+795531x+752817792\) |
3.8.0-3.a.1.1, 8062.2.0.?, 24186.16.0.? |
$[(-6950621/105, 1404516182/105)]$ |
40310.k1 |
40310d1 |
40310.k |
40310d |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{10} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.714676524$ |
$1$ |
|
$4$ |
$11520$ |
$0.231983$ |
$-90458382169/103193600$ |
$0.90542$ |
$2.48173$ |
$[1, 0, 1, -94, 592]$ |
\(y^2+xy+y=x^3-94x+592\) |
8062.2.0.? |
$[(5, 13)]$ |
40310.l1 |
40310f1 |
40310.l |
40310f |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{12} \cdot 5^{4} \cdot 29 \cdot 139 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.786432443$ |
$1$ |
|
$10$ |
$41472$ |
$0.806951$ |
$-4937402992298041/10319360000$ |
$0.86421$ |
$3.40796$ |
$[1, 0, 1, -3548, 81178]$ |
\(y^2+xy+y=x^3-3548x+81178\) |
8062.2.0.? |
$[(49, 135), (64, 310)]$ |
40310.m1 |
40310b1 |
40310.m |
40310b |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( 2^{5} \cdot 5^{5} \cdot 29 \cdot 139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$161240$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24400$ |
$0.548007$ |
$247779650941129/403100000$ |
$0.84289$ |
$3.12547$ |
$[1, 1, 0, -1308, 17648]$ |
\(y^2+xy=x^3+x^2-1308x+17648\) |
161240.2.0.? |
$[]$ |
40310.n1 |
40310k1 |
40310.n |
40310k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2 \cdot 5^{2} \cdot 29^{3} \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$32248$ |
$2$ |
$0$ |
$2.315917596$ |
$1$ |
|
$2$ |
$39744$ |
$0.696685$ |
$-8004921008668921/169503550$ |
$0.86736$ |
$3.45319$ |
$[1, 1, 0, -4167, 101819]$ |
\(y^2+xy=x^3+x^2-4167x+101819\) |
32248.2.0.? |
$[(35, 2)]$ |
40310.o1 |
40310e1 |
40310.o |
40310e |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{26} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$2.657717826$ |
$1$ |
|
$0$ |
$247936$ |
$1.290241$ |
$-853938369453624489/6762895769600$ |
$0.91093$ |
$3.89484$ |
$[1, -1, 0, -19765, 1081781]$ |
\(y^2+xy=x^3-x^2-19765x+1081781\) |
8062.2.0.? |
$[(-182/3, 33041/3)]$ |
40310.p1 |
40310bd2 |
40310.p |
40310bd |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{2} \cdot 29 \cdot 139^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.5 |
7B.1.3 |
$56434$ |
$96$ |
$2$ |
$1$ |
$49$ |
$7$ |
$0$ |
$206524416$ |
$4.723389$ |
$-3300900313422115945972159074168895576881/2907378668445199100$ |
$1.05487$ |
$8.58091$ |
$[1, -1, 1, -310196027862, -66496985128639551]$ |
\(y^2+xy+y=x^3-x^2-310196027862x-66496985128639551\) |
7.48.0-7.a.2.2, 8062.2.0.?, 56434.96.2.? |
$[]$ |
40310.p2 |
40310bd1 |
40310.p |
40310bd |
$2$ |
$7$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{14} \cdot 5^{14} \cdot 29^{7} \cdot 139 \) |
$0$ |
$\Z/7\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$7$ |
7.48.0.1 |
7B.1.1 |
$56434$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$6$ |
$29503488$ |
$3.750435$ |
$-107350761560343751123953328881/239773280695100000000000000$ |
$1.02080$ |
$6.45271$ |
$[1, -1, 1, -99013362, -835939931151]$ |
\(y^2+xy+y=x^3-x^2-99013362x-835939931151\) |
7.48.0-7.a.1.2, 8062.2.0.?, 56434.96.2.? |
$[]$ |
40310.q1 |
40310ba1 |
40310.q |
40310ba |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( 2^{15} \cdot 5 \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$161240$ |
$2$ |
$0$ |
$0.365522304$ |
$1$ |
|
$4$ |
$20880$ |
$0.382552$ |
$1177918188481/660439040$ |
$0.83894$ |
$2.62107$ |
$[1, 0, 0, -220, -240]$ |
\(y^2+xy=x^3-220x-240\) |
161240.2.0.? |
$[(-8, 36)]$ |
40310.r1 |
40310q1 |
40310.r |
40310q |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{38} \cdot 5^{4} \cdot 29^{5} \cdot 139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6323200$ |
$3.351665$ |
$-35055468499828627267048916929/489806610720610058240000$ |
$1.11459$ |
$6.20034$ |
$[1, 1, 1, -68183196, -219331472771]$ |
\(y^2+xy+y=x^3+x^2-68183196x-219331472771\) |
8062.2.0.? |
$[]$ |
40310.s1 |
40310r1 |
40310.s |
40310r |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{18} \cdot 5^{6} \cdot 29 \cdot 139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$670464$ |
$2.145775$ |
$-2801020093481184227473969/16510976000000$ |
$0.96040$ |
$5.30839$ |
$[1, 1, 1, -2936731, -1938289431]$ |
\(y^2+xy+y=x^3+x^2-2936731x-1938289431\) |
8062.2.0.? |
$[]$ |
40310.t1 |
40310x1 |
40310.t |
40310x |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{8} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.294094774$ |
$1$ |
|
$6$ |
$10240$ |
$0.109771$ |
$30342134159/25798400$ |
$0.77997$ |
$2.27603$ |
$[1, 1, 1, 65, 165]$ |
\(y^2+xy+y=x^3+x^2+65x+165\) |
8062.2.0.? |
$[(3, 18)]$ |
40310.u1 |
40310y2 |
40310.u |
40310y |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{4} \cdot 5^{2} \cdot 29^{5} \cdot 139^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$40310$ |
$48$ |
$1$ |
$19.25461174$ |
$1$ |
|
$0$ |
$1536000$ |
$2.672905$ |
$-1448610774532009781827681/425719930023619660400$ |
$0.96181$ |
$5.28493$ |
$[1, 1, 1, -2357270, -1711540605]$ |
\(y^2+xy+y=x^3+x^2-2357270x-1711540605\) |
5.24.0-5.a.2.2, 8062.2.0.?, 40310.48.1.? |
$[(816673603/231, 23121783803453/231)]$ |
40310.u2 |
40310y1 |
40310.u |
40310y |
$2$ |
$5$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{20} \cdot 5^{10} \cdot 29 \cdot 139 \) |
$1$ |
$\Z/5\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.1 |
5B.1.1 |
$40310$ |
$48$ |
$1$ |
$3.850922349$ |
$1$ |
|
$8$ |
$307200$ |
$1.868187$ |
$-791353021095715681/41277440000000000$ |
$0.94663$ |
$4.31189$ |
$[1, 1, 1, -19270, 9820995]$ |
\(y^2+xy+y=x^3+x^2-19270x+9820995\) |
5.24.0-5.a.1.2, 8062.2.0.?, 40310.48.1.? |
$[(203, 3683)]$ |
40310.v1 |
40310p2 |
40310.v |
40310p |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( 2^{4} \cdot 5 \cdot 29^{2} \cdot 139^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$80620$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19200$ |
$0.454805$ |
$4450599366849/1299916880$ |
$0.82710$ |
$2.74642$ |
$[1, -1, 1, -343, -1633]$ |
\(y^2+xy+y=x^3-x^2-343x-1633\) |
2.3.0.a.1, 10.6.0.a.1, 16124.6.0.?, 80620.12.0.? |
$[]$ |
40310.v2 |
40310p1 |
40310.v |
40310p |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{8} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$80620$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$9600$ |
$0.108232$ |
$20819570751/25798400$ |
$0.81398$ |
$2.25297$ |
$[1, -1, 1, 57, -193]$ |
\(y^2+xy+y=x^3-x^2+57x-193\) |
2.3.0.a.1, 20.6.0.c.1, 8062.6.0.?, 80620.12.0.? |
$[]$ |
40310.w1 |
40310u2 |
40310.w |
40310u |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( 2^{4} \cdot 5^{6} \cdot 29 \cdot 139^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$80620$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55296$ |
$0.866254$ |
$1042868381560929/140077250000$ |
$0.86918$ |
$3.26100$ |
$[1, -1, 1, -2113, 33281]$ |
\(y^2+xy+y=x^3-x^2-2113x+33281\) |
2.3.0.a.1, 58.6.0.a.1, 2780.6.0.?, 80620.12.0.? |
$[]$ |
40310.w2 |
40310u1 |
40310.w |
40310u |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{8} \cdot 5^{3} \cdot 29^{2} \cdot 139 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$80620$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$27648$ |
$0.519680$ |
$985371912351/3740768000$ |
$0.87102$ |
$2.76602$ |
$[1, -1, 1, 207, 2657]$ |
\(y^2+xy+y=x^3-x^2+207x+2657\) |
2.3.0.a.1, 116.6.0.?, 1390.6.0.?, 80620.12.0.? |
$[]$ |
40310.x1 |
40310t1 |
40310.x |
40310t |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{4} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$0.357676247$ |
$1$ |
|
$4$ |
$10240$ |
$-0.034329$ |
$-48587168449/1612400$ |
$0.76505$ |
$2.32568$ |
$[1, 0, 0, -76, 256]$ |
\(y^2+xy=x^3-76x+256\) |
8062.2.0.? |
$[(6, 2)]$ |
40310.y1 |
40310v1 |
40310.y |
40310v |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{6} \cdot 5^{2} \cdot 29^{3} \cdot 139 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$24186$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$46464$ |
$0.572347$ |
$-10487639818369/5424113600$ |
$0.82741$ |
$2.88747$ |
$[1, 0, 0, -456, 5120]$ |
\(y^2+xy=x^3-456x+5120\) |
3.8.0-3.a.1.2, 8062.2.0.?, 24186.16.0.? |
$[]$ |
40310.y2 |
40310v2 |
40310.y |
40310v |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{6} \cdot 29 \cdot 139^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$24186$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$139392$ |
$1.121653$ |
$5176908959038271/4867684437500$ |
$0.88102$ |
$3.41209$ |
$[1, 0, 0, 3604, -65524]$ |
\(y^2+xy=x^3+3604x-65524\) |
3.8.0-3.a.1.1, 8062.2.0.?, 24186.16.0.? |
$[]$ |
40310.z1 |
40310bb1 |
40310.z |
40310bb |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{6} \cdot 5^{6} \cdot 29 \cdot 139 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$24186$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$19968$ |
$0.599259$ |
$-69127969831921/4031000000$ |
$0.83439$ |
$3.01414$ |
$[1, 0, 0, -855, 10025]$ |
\(y^2+xy=x^3-855x+10025\) |
3.8.0-3.a.1.2, 8062.2.0.?, 24186.16.0.? |
$[]$ |
40310.z2 |
40310bb2 |
40310.z |
40310bb |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{2} \cdot 29^{3} \cdot 139^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$24186$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$59904$ |
$1.148565$ |
$11083451457520079/6549956179100$ |
$0.91131$ |
$3.48387$ |
$[1, 0, 0, 4645, 18125]$ |
\(y^2+xy=x^3+4645x+18125\) |
3.8.0-3.a.1.1, 8062.2.0.?, 24186.16.0.? |
$[]$ |
40310.ba1 |
40310w1 |
40310.ba |
40310w |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{6} \cdot 5^{4} \cdot 29^{7} \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$7.999102595$ |
$1$ |
|
$0$ |
$612864$ |
$2.290585$ |
$-919602720982617332649841/95909312278040000$ |
$0.95655$ |
$5.20337$ |
$[1, 0, 0, -2025935, -1110175303]$ |
\(y^2+xy=x^3-2025935x-1110175303\) |
8062.2.0.? |
$[(6671/2, 91449/2)]$ |
40310.bb1 |
40310z1 |
40310.bb |
40310z |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{27} \cdot 5^{6} \cdot 29 \cdot 139 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$32248$ |
$2$ |
$0$ |
$0.250957988$ |
$1$ |
|
$4$ |
$336960$ |
$1.739777$ |
$-1381877673393082321/8453619712000000$ |
$0.92632$ |
$4.16984$ |
$[1, 1, 1, -23205, 4618475]$ |
\(y^2+xy+y=x^3+x^2-23205x+4618475\) |
32248.2.0.? |
$[(-57, 2428)]$ |
40310.bc1 |
40310s1 |
40310.bc |
40310s |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13056$ |
$-0.245110$ |
$-2146689/403100$ |
$0.76369$ |
$1.92041$ |
$[1, -1, 1, -3, 31]$ |
\(y^2+xy+y=x^3-x^2-3x+31\) |
8062.2.0.? |
$[]$ |
40310.bd1 |
40310bc1 |
40310.bd |
40310bc |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 29 \cdot 139 \) |
\( - 2^{2} \cdot 5^{2} \cdot 29 \cdot 139 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$8062$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10752$ |
$-0.131910$ |
$-20145851361/403100$ |
$0.75522$ |
$2.24061$ |
$[1, -1, 1, -57, 181]$ |
\(y^2+xy+y=x^3-x^2-57x+181\) |
8062.2.0.? |
$[]$ |