# Properties

 Label 4026.d Number of curves 2 Conductor 4026 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("4026.d1")
sage: E.isogeny_class()

## Elliptic curves in class 4026.d

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
4026.d1 4026e2 [1, 0, 1, -114, 454] 2 1184
4026.d2 4026e1 [1, 0, 1, -4, 14] 2 592 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 4026.d have rank $$0$$.

## Modular form4026.2.a.d

sage: E.q_eigenform(10)
$$q - q^{2} + q^{3} + q^{4} + 4q^{5} - q^{6} - q^{8} + q^{9} - 4q^{10} + q^{11} + q^{12} + 2q^{13} + 4q^{15} + q^{16} + 2q^{17} - q^{18} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 