Properties

Label 4025.c
Number of curves $1$
Conductor $4025$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4025.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4025.c1 4025g1 \([0, -1, 1, -343, 2563]\) \(-35806478336/3703\) \(-462875\) \([]\) \(544\) \(0.11961\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4025.c1 has rank \(1\).

Complex multiplication

The elliptic curves in class 4025.c do not have complex multiplication.

Modular form 4025.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} + q^{7} - 2 q^{9} - q^{11} + 2 q^{12} - q^{13} + 4 q^{16} - q^{17} + 2 q^{19} + O(q^{20})\)  Toggle raw display