Show commands for:
SageMath
sage: E = EllipticCurve("s1")
sage: E.isogeny_class()
Elliptic curves in class 4018.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
4018.s1 | 4018s2 | [1, -1, 1, -470954322, 3933954127513] | [] | 1185408 | |
4018.s2 | 4018s1 | [1, -1, 1, -948282, -326942087] | [] | 169344 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4018.s have rank \(0\).
Complex multiplication
The elliptic curves in class 4018.s do not have complex multiplication.Modular form 4018.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.