Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2+92x-312\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+92xz^2-312z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+7425x-249750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(3, 0)$ | $0$ | $2$ |
Integral points
\( \left(3, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 400 \) | = | $2^{4} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $-100000000$ | = | $-1 \cdot 2^{8} \cdot 5^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{21296}{25} \) | = | $2^{4} \cdot 5^{-2} \cdot 11^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.22134245098150287083496964677$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0454746256088441894102314341$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8396384887826309$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.20535401127832$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $1.0170375954240394497805478667$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0170375954240394497805478667 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.017037595 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.017038 \cdot 1.000000 \cdot 4}{2^2} \\ & \approx 1.017037595\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 96 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 |
$5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.38 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 97 & 24 \\ 96 & 25 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 24 \\ 12 & 13 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 74 & 95 \end{array}\right),\left(\begin{array}{rr} 61 & 24 \\ 6 & 25 \end{array}\right),\left(\begin{array}{rr} 21 & 116 \\ 49 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 105 & 98 \\ 106 & 37 \end{array}\right),\left(\begin{array}{rr} 99 & 16 \\ 46 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$92160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 25 = 5^{2} \) |
$5$ | additive | $18$ | \( 16 = 2^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 400e
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 20a1, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.0.4.1-2500.3-a6 |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.400.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.21600000.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.163840000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.2560000.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | 12.0.466560000000000.4 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.0.466560000000000.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.26843545600000000.2 | \(\Z/4\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.4.16777216000000000000.3 | \(\Z/8\Z\) | not in database |
$18$ | 18.0.7934371614720000000000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 |
---|---|---|---|
Reduction type | add | ord | add |
$\lambda$-invariant(s) | - | 2 | - |
$\mu$-invariant(s) | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.