Properties

Label 400a
Number of curves 4
Conductor 400
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("400.e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 400a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
400.e3 400a1 [0, 0, 0, -50, -125] [2] 48 \(\Gamma_0(N)\)-optimal
400.e2 400a2 [0, 0, 0, -175, 750] [2, 2] 96  
400.e1 400a3 [0, 0, 0, -2675, 53250] [4] 192  
400.e4 400a4 [0, 0, 0, 325, 4250] [2] 192  

Rank

sage: E.rank()
 

The elliptic curves in class 400a have rank \(1\).

Modular form 400.2.a.e

sage: E.q_eigenform(10)
 
\( q - 4q^{7} - 3q^{9} - 4q^{11} + 2q^{13} - 2q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.