Properties

Label 4002.n
Number of curves $4$
Conductor $4002$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 4002.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4002.n1 4002o3 \([1, 0, 0, -242219, -45904101]\) \(1571623248760107387697/12708699174\) \(12708699174\) \([2]\) \(23040\) \(1.5281\)  
4002.n2 4002o4 \([1, 0, 0, -21359, -75057]\) \(1077625178826324337/621306044897562\) \(621306044897562\) \([2]\) \(23040\) \(1.5281\)  
4002.n3 4002o2 \([1, 0, 0, -15149, -717171]\) \(384483228869610577/1091026208484\) \(1091026208484\) \([2, 2]\) \(11520\) \(1.1815\)  
4002.n4 4002o1 \([1, 0, 0, -569, -20247]\) \(-20375497153297/164474612208\) \(-164474612208\) \([4]\) \(5760\) \(0.83497\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4002.n have rank \(0\).

Complex multiplication

The elliptic curves in class 4002.n do not have complex multiplication.

Modular form 4002.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} - 4 q^{7} + q^{8} + q^{9} - 2 q^{10} + q^{12} - 2 q^{13} - 4 q^{14} - 2 q^{15} + q^{16} + 6 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.