Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 4002.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4002.g1 | 4002e2 | \([1, 0, 1, -225504, -41235956]\) | \(1268188156752269618809/22367178\) | \(22367178\) | \([2]\) | \(15360\) | \(1.4027\) | |
4002.g2 | 4002e1 | \([1, 0, 1, -14094, -645236]\) | \(-309586644846318169/41118653052\) | \(-41118653052\) | \([2]\) | \(7680\) | \(1.0561\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4002.g have rank \(0\).
Complex multiplication
The elliptic curves in class 4002.g do not have complex multiplication.Modular form 4002.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.