Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 4002.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4002.d1 | 4002g1 | \([1, 0, 1, -445, 3632]\) | \(-9714044119753/194769336\) | \(-194769336\) | \([]\) | \(2112\) | \(0.38305\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 4002.d1 has rank \(1\).
Complex multiplication
The elliptic curves in class 4002.d do not have complex multiplication.Modular form 4002.2.a.d
sage: E.q_eigenform(10)