Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 40.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
40.a1 | 40a2 | \([0, 0, 0, -107, -426]\) | \(132304644/5\) | \(5120\) | \([2]\) | \(4\) | \(-0.20221\) | |
40.a2 | 40a1 | \([0, 0, 0, -7, -6]\) | \(148176/25\) | \(6400\) | \([2, 2]\) | \(2\) | \(-0.54879\) | \(\Gamma_0(N)\)-optimal |
40.a3 | 40a3 | \([0, 0, 0, -2, 1]\) | \(55296/5\) | \(80\) | \([4]\) | \(4\) | \(-0.89536\) | |
40.a4 | 40a4 | \([0, 0, 0, 13, -34]\) | \(237276/625\) | \(-640000\) | \([4]\) | \(4\) | \(-0.20221\) |
Rank
sage: E.rank()
The elliptic curves in class 40.a have rank \(0\).
Complex multiplication
The elliptic curves in class 40.a do not have complex multiplication.Modular form 40.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.