⌂
→
Elliptic curves
→
$\Q$
→
40
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 40
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Stein-Watkins dataset
BHKSSW dataset
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (4 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
40.a1
40a2
40.a
40a
$4$
$4$
\( 2^{3} \cdot 5 \)
\( 2^{10} \cdot 5 \)
$0$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
$2$
16.48.0.55
2B
$80$
$192$
$3$
$1$
$1$
$1$
$4$
$-0.202214$
$132304644/5$
$1.13632$
$6.94848$
$[0, 0, 0, -107, -426]$
\(y^2=x^3-107x-426\)
2.3.0.a.1
,
4.12.0-4.c.1.2
,
8.24.0-8.o.1.3
,
10.6.0.a.1
,
16.48.0-16.i.1.3
, $\ldots$
$[]$
40.a2
40a1
40.a
40a
$4$
$4$
\( 2^{3} \cdot 5 \)
\( 2^{8} \cdot 5^{2} \)
$0$
$\Z/2\Z\oplus\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
$2$
8.48.0.39
2Cs
$40$
$192$
$3$
$1$
$1$
$3$
$2$
$-0.548787$
$148176/25$
$1.09175$
$4.73080$
$[0, 0, 0, -7, -6]$
\(y^2=x^3-7x-6\)
2.6.0.a.1
,
4.24.0-4.a.1.1
,
8.48.0-8.g.1.1
,
20.48.0-20.b.1.1
,
40.192.3-40.bk.1.5
$[]$
40.a3
40a3
40.a
40a
$4$
$4$
\( 2^{3} \cdot 5 \)
\( 2^{4} \cdot 5 \)
$0$
$\Z/4\Z$
$\Q$
$\mathrm{SU}(2)$
$2$
16.48.0.39
2B
$80$
$192$
$3$
$1$
$1$
$3$
$4$
$-0.895361$
$55296/5$
$1.01898$
$3.71198$
$[0, 0, 0, -2, 1]$
\(y^2=x^3-2x+1\)
2.3.0.a.1
,
4.12.0-4.c.1.1
,
8.24.0-8.o.1.1
,
10.6.0.a.1
,
16.48.0-16.i.1.1
, $\ldots$
$[]$
40.a4
40a4
40.a
40a
$4$
$4$
\( 2^{3} \cdot 5 \)
\( - 2^{10} \cdot 5^{4} \)
$0$
$\Z/4\Z$
$\Q$
$\mathrm{SU}(2)$
$2$
4.48.0.2
2B
$80$
$192$
$3$
$1$
$1$
$3$
$4$
$-0.202214$
$237276/625$
$1.04671$
$5.57781$
$[0, 0, 0, 13, -34]$
\(y^2=x^3+13x-34\)
2.3.0.a.1
,
4.48.0-4.c.1.1
,
40.96.1-40.dk.1.1
, 80.192.3.?
$[]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV