The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000
| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 40.a1 |
40a2 |
40.a |
40a |
$4$ |
$4$ |
\( 2^{3} \cdot 5 \) |
\( 2^{10} \cdot 5 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.55 |
2B |
$80$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$4$ |
$-0.202214$ |
$132304644/5$ |
$1.13632$ |
$6.94848$ |
$[0, 0, 0, -107, -426]$ |
\(y^2=x^3-107x-426\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.o.1.3, 10.6.0.a.1, 16.48.0-16.i.1.3, $\ldots$ |
$[ ]$ |
$1$ |
| 40.a2 |
40a1 |
40.a |
40a |
$4$ |
$4$ |
\( 2^{3} \cdot 5 \) |
\( 2^{8} \cdot 5^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.39 |
2Cs |
$40$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$3$ |
$2$ |
$-0.548787$ |
$148176/25$ |
$1.09175$ |
$4.73080$ |
$[0, 0, 0, -7, -6]$ |
\(y^2=x^3-7x-6\) |
2.6.0.a.1, 4.24.0-4.a.1.1, 8.48.0-8.g.1.1, 20.48.0-20.b.1.1, 40.192.3-40.bk.1.5 |
$[ ]$ |
$1$ |
| 40.a3 |
40a3 |
40.a |
40a |
$4$ |
$4$ |
\( 2^{3} \cdot 5 \) |
\( 2^{4} \cdot 5 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.39 |
2B |
$80$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$3$ |
$4$ |
$-0.895361$ |
$55296/5$ |
$1.01898$ |
$3.71198$ |
$[0, 0, 0, -2, 1]$ |
\(y^2=x^3-2x+1\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.o.1.1, 10.6.0.a.1, 16.48.0-16.i.1.1, $\ldots$ |
$[ ]$ |
$2$ |
| 40.a4 |
40a4 |
40.a |
40a |
$4$ |
$4$ |
\( 2^{3} \cdot 5 \) |
\( - 2^{10} \cdot 5^{4} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.48.0.2 |
2B |
$80$ |
$192$ |
$3$ |
$1$ |
$1$ |
|
$3$ |
$4$ |
$-0.202214$ |
$237276/625$ |
$1.04671$ |
$5.57781$ |
$[0, 0, 0, 13, -34]$ |
\(y^2=x^3+13x-34\) |
2.3.0.a.1, 4.48.0-4.c.1.1, 40.96.1-40.dk.1.1, 80.192.3.? |
$[ ]$ |
$1$ |
Download
displayed columns for
results