Properties

Label 39a
Number of curves $4$
Conductor $39$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 39a have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 39a do not have complex multiplication.

Modular form 39.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} + 2 q^{5} - q^{6} - 4 q^{7} - 3 q^{8} + q^{9} + 2 q^{10} + 4 q^{11} + q^{12} + q^{13} - 4 q^{14} - 2 q^{15} - q^{16} + 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 39a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
39.a3 39a1 \([1, 1, 0, -4, -5]\) \(10218313/1521\) \(1521\) \([2, 2]\) \(2\) \(-0.66494\) \(\Gamma_0(N)\)-optimal
39.a1 39a2 \([1, 1, 0, -69, -252]\) \(37159393753/1053\) \(1053\) \([2]\) \(4\) \(-0.31837\)  
39.a2 39a3 \([1, 1, 0, -19, 22]\) \(822656953/85683\) \(85683\) \([4]\) \(4\) \(-0.31837\)  
39.a4 39a4 \([1, 1, 0, 1, 0]\) \(12167/39\) \(-39\) \([2]\) \(4\) \(-1.0115\)