Properties

Label 39600.fb
Number of curves 4
Conductor 39600
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("39600.fb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 39600.fb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
39600.fb1 39600ed4 [0, 0, 0, -527475, 147307250] [2] 393216  
39600.fb2 39600ed2 [0, 0, 0, -41475, 1021250] [2, 2] 196608  
39600.fb3 39600ed1 [0, 0, 0, -23475, -1372750] [2] 98304 \(\Gamma_0(N)\)-optimal
39600.fb4 39600ed3 [0, 0, 0, 156525, 7951250] [2] 393216  

Rank

sage: E.rank()
 

The elliptic curves in class 39600.fb have rank \(0\).

Modular form 39600.2.a.fb

sage: E.q_eigenform(10)
 
\( q + 4q^{7} + q^{11} + 2q^{13} - 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.