# Properties

 Label 396.a Number of curves 2 Conductor 396 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("396.a1")

sage: E.isogeny_class()

## Elliptic curves in class 396.a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
396.a1 396b2 [0, 0, 0, -111, 214]  96
396.a2 396b1 [0, 0, 0, 24, 25]  48 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 396.a have rank $$1$$.

## Modular form396.2.a.a

sage: E.q_eigenform(10)

$$q - 2q^{5} - 2q^{7} - q^{11} - 2q^{13} - 4q^{17} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 