Show commands for:
SageMath
sage: E = EllipticCurve("f1")
sage: E.isogeny_class()
Elliptic curves in class 394944f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
394944.f1 | 394944f1 | [0, -1, 0, -1517985, 719912481] | [2] | 8847360 | \(\Gamma_0(N)\)-optimal |
394944.f2 | 394944f2 | [0, -1, 0, -1208225, 1021928481] | [2] | 17694720 |
Rank
sage: E.rank()
The elliptic curves in class 394944f have rank \(1\).
Complex multiplication
The elliptic curves in class 394944f do not have complex multiplication.Modular form 394944.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.