Properties

Label 394944.ev
Number of curves $2$
Conductor $394944$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("ev1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 394944.ev

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
394944.ev1 394944ev1 [0, 1, 0, -1517985, -719912481] [2] 8847360 \(\Gamma_0(N)\)-optimal
394944.ev2 394944ev2 [0, 1, 0, -1208225, -1021928481] [2] 17694720  

Rank

sage: E.rank()
 

The elliptic curves in class 394944.ev have rank \(1\).

Complex multiplication

The elliptic curves in class 394944.ev do not have complex multiplication.

Modular form 394944.2.a.ev

sage: E.q_eigenform(10)
 
\( q + q^{3} - 4q^{5} - 2q^{7} + q^{9} - 4q^{15} + q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.