# Properties

 Label 392c1 Conductor 392 Discriminant 38416 j-invariant $$12544$$ CM no Rank 1 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, -1, 0, -16, 29]); // or

magma: E := EllipticCurve("392c1");

sage: E = EllipticCurve([0, -1, 0, -16, 29]) # or

sage: E = EllipticCurve("392c1")

gp: E = ellinit([0, -1, 0, -16, 29]) \\ or

gp: E = ellinit("392c1")

$$y^2 = x^{3} - x^{2} - 16 x + 29$$

## Mordell-Weil group structure

$$\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-2, 7\right)$$ $$\hat{h}(P)$$ ≈ 0.0715412282921

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$(-2,\pm 7)$$, $$(2,\pm 1)$$, $$(5,\pm 7)$$, $$(13,\pm 43)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$392$$ = $$2^{3} \cdot 7^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$38416$$ = $$2^{4} \cdot 7^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$12544$$ = $$2^{8} \cdot 7^{2}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$0.0715412282921$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$3.56111889744$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$6$$  = $$2\cdot3$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form392.2.a.c

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{3} - q^{5} - 2q^{9} + 3q^{11} - 6q^{13} + q^{15} - 5q^{17} + q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 24 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$1.5286009201$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$III$$ Additive 1 3 4 0
$$7$$ $$3$$ $$IV$$ Additive 1 2 4 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X2a.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 1 & 2 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 3 \end{array}\right)$ and has index 4.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cn

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ordinary ordinary add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary - 1 5 - 1 1 1 3 1 1 1 5 1 1 1 - 0 0 - 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 392c consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 $$\Q(\zeta_{7})^+$$ $$\Z/2\Z \times \Z/2\Z$$ 3.3.49.1-512.1-e3

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.