# Properties

 Label 39270.cp6 Conductor 39270 Discriminant 12262789317997149185802240000 j-invariant $$\frac{129511249478743944259581330835009}{12262789317997149185802240000}$$ CM no Rank 0 Torsion Structure $$\Z/{2}\Z \times \Z/{6}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 0, -1054050116, -12046088636400]) # or

sage: E = EllipticCurve("39270cn2")

gp: E = ellinit([1, 0, 0, -1054050116, -12046088636400]) \\ or

gp: E = ellinit("39270cn2")

magma: E := EllipticCurve([1, 0, 0, -1054050116, -12046088636400]); // or

magma: E := EllipticCurve("39270cn2");

$$y^2 + x y = x^{3} - 1054050116 x - 12046088636400$$

## Mordell-Weil group structure

$$\Z/{2}\Z \times \Z/{6}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-14072, 7036\right)$$, $$\left(203728, 90611836\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-20672, 964036\right)$$, $$\left(-20672, -943364\right)$$, $$\left(-16184, 887740\right)$$, $$\left(-16184, -871556\right)$$, $$\left(-14072, 7036\right)$$, $$\left(37128, -18564\right)$$, $$\left(55624, 10043260\right)$$, $$\left(55624, -10098884\right)$$, $$\left(203728, 90611836\right)$$, $$\left(203728, -90815564\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$39270$$ = $$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$12262789317997149185802240000$$ = $$2^{18} \cdot 3^{6} \cdot 5^{4} \cdot 7^{4} \cdot 11^{6} \cdot 17^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{129511249478743944259581330835009}{12262789317997149185802240000}$$ = $$2^{-18} \cdot 3^{-6} \cdot 5^{-4} \cdot 7^{-4} \cdot 11^{-6} \cdot 17^{-6} \cdot 19^{3} \cdot 31^{3} \cdot 43^{3} \cdot 1997647^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.0266571876686$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$31104$$  = $$( 2 \cdot 3^{2} )\cdot( 2 \cdot 3 )\cdot2\cdot2^{2}\cdot( 2 \cdot 3 )\cdot( 2 \cdot 3 )$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$12$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 39270.2.a.cp

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + 2q^{13} + q^{14} - q^{15} + q^{16} + q^{17} + q^{18} + 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 37158912 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$5.75795253642$$

## Local data

This elliptic curve is semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$18$$ $$I_{18}$$ Split multiplicative -1 1 18 18
$$3$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$5$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$7$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$11$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6
$$17$$ $$6$$ $$I_{6}$$ Split multiplicative -1 1 6 6

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8c.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 6 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 5 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs
$$3$$ B.1.1

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 17 split split nonsplit split split split 5 5 0 1 3 1 1 0 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 39270.cp consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{6}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
4 $$\Q(\sqrt{-2}, \sqrt{33})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
$$\Q(\sqrt{2}, \sqrt{17})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
$$\Q(\sqrt{-17}, \sqrt{-33})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
6 6.0.40516875.1 $$\Z/6\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.