Properties

Label 3920.bi
Number of curves $1$
Conductor $3920$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bi1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 3920.bi

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3920.bi1 3920s1 \([0, 0, 0, -343, 4802]\) \(-3024/5\) \(-7378945280\) \([]\) \(4032\) \(0.58437\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3920.bi1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3920.bi do not have complex multiplication.

Modular form 3920.2.a.bi

sage: E.q_eigenform(10)
 
\(q + 3q^{3} - q^{5} + 6q^{9} + 2q^{11} - 6q^{13} - 3q^{15} + 2q^{17} + O(q^{20})\)  Toggle raw display