Properties

Label 392.f
Number of curves $1$
Conductor $392$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 392.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
392.f1 392e1 [0, 0, 0, -343, -2401] [] 168 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 392.f1 has rank \(0\).

Complex multiplication

The elliptic curves in class 392.f do not have complex multiplication.

Modular form 392.2.a.f

sage: E.q_eigenform(10)
 
\( q + 3q^{3} - q^{5} + 6q^{9} - q^{11} + 2q^{13} - 3q^{15} + 3q^{17} + 5q^{19} + O(q^{20}) \)