Show commands for:
SageMath
sage: E = EllipticCurve("d1")
sage: E.isogeny_class()
Elliptic curves in class 392.d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
392.d1 | 392a3 | [0, 0, 0, -14651, -682570] | [2] | 384 | |
392.d2 | 392a4 | [0, 0, 0, -2891, 47334] | [2] | 384 | |
392.d3 | 392a2 | [0, 0, 0, -931, -10290] | [2, 2] | 192 | |
392.d4 | 392a1 | [0, 0, 0, 49, -686] | [4] | 96 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 392.d have rank \(1\).
Complex multiplication
The elliptic curves in class 392.d do not have complex multiplication.Modular form 392.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.