Properties

Label 390225p
Number of curves $6$
Conductor $390225$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 390225p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390225p do not have complex multiplication.

Modular form 390225.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} + 3 q^{8} + q^{9} - q^{12} + 6 q^{13} - q^{16} - 6 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 390225p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390225.p5 390225p1 \([1, 0, 0, -14641063, -22171829008]\) \(-12539072261612161/414784434735\) \(-11481498874743302109375\) \([2]\) \(29491200\) \(3.0076\) \(\Gamma_0(N)\)-optimal
390225.p4 390225p2 \([1, 0, 0, -236086188, -1396238829633]\) \(52572582932532371281/54819198225\) \(1517430525416862890625\) \([2, 2]\) \(58982400\) \(3.3542\)  
390225.p3 390225p3 \([1, 0, 0, -237916313, -1373492206008]\) \(53804702959424445601/1696325722925625\) \(46955382719247549228515625\) \([2, 2]\) \(117964800\) \(3.7007\)  
390225.p1 390225p4 \([1, 0, 0, -3777378063, -89358387712758]\) \(215337138023212870452481/234135\) \(6481006792734375\) \([2]\) \(117964800\) \(3.7007\)  
390225.p2 390225p5 \([1, 0, 0, -574825688, 3384678897117]\) \(758850244829023683601/260354661183562275\) \(7206783811265824491582421875\) \([2]\) \(235929600\) \(4.0473\)  
390225.p6 390225p6 \([1, 0, 0, 69711062, -4675872076633]\) \(1353482583458377679/342002835319921875\) \(-9466857577221814324951171875\) \([2]\) \(235929600\) \(4.0473\)