Properties

Label 390225.q
Number of curves $1$
Conductor $390225$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 390225.q1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 390225.q do not have complex multiplication.

Modular form 390225.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} + q^{7} + 3 q^{8} + q^{9} - q^{12} + 4 q^{13} - q^{14} - q^{16} + q^{17} - q^{18} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 390225.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390225.q1 390225q1 \([1, 0, 0, -72663, -15077358]\) \(-38320214425/66447513\) \(-73572389111120625\) \([]\) \(3006720\) \(1.9269\) \(\Gamma_0(N)\)-optimal