| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 390225.a1 |
390225a1 |
390225.a |
390225a |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{3} \cdot 5^{9} \cdot 11^{2} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1290$ |
$2$ |
$0$ |
$1.296722999$ |
$1$ |
|
$4$ |
$720000$ |
$0.940150$ |
$15454208/1161$ |
$0.81437$ |
$2.78335$ |
$[0, -1, 1, -3208, 66318]$ |
\(y^2+y=x^3-x^2-3208x+66318\) |
1290.2.0.? |
$[(42, 62)]$ |
$1$ |
| 390225.b1 |
390225b1 |
390225.b |
390225b |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{4} \cdot 5^{8} \cdot 11^{8} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9907200$ |
$2.156384$ |
$-29550530560/421443$ |
$0.82285$ |
$3.99213$ |
$[0, -1, 1, -569708, -167348182]$ |
\(y^2+y=x^3-x^2-569708x-167348182\) |
86.2.0.? |
$[ ]$ |
$1$ |
| 390225.c1 |
390225c1 |
390225.c |
390225c |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{6} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6220800$ |
$1.816113$ |
$99897344/783675$ |
$0.89128$ |
$3.49481$ |
$[0, -1, 1, 29242, -6829582]$ |
\(y^2+y=x^3-x^2+29242x-6829582\) |
86.2.0.? |
$[ ]$ |
$1$ |
| 390225.d1 |
390225d1 |
390225.d |
390225d |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{3} \cdot 5^{3} \cdot 11^{8} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1290$ |
$2$ |
$0$ |
$1.083800563$ |
$1$ |
|
$14$ |
$1584000$ |
$1.334379$ |
$15454208/1161$ |
$0.81437$ |
$3.15080$ |
$[0, 1, 1, -15528, -699946]$ |
\(y^2+y=x^3+x^2-15528x-699946\) |
1290.2.0.? |
$[(-81, 181), (1008, 31762)]$ |
$1$ |
| 390225.e1 |
390225e1 |
390225.e |
390225e |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3 \cdot 5^{6} \cdot 11^{8} \cdot 43^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16727040$ |
$2.434315$ |
$7496192000/10256403$ |
$1.02285$ |
$4.03030$ |
$[0, 1, 1, 610042, -214006006]$ |
\(y^2+y=x^3+x^2+610042x-214006006\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 390225.f1 |
390225f1 |
390225.f |
390225f |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3 \cdot 5^{8} \cdot 11^{4} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1972224$ |
$1.269884$ |
$-495616/138675$ |
$0.88374$ |
$2.99390$ |
$[0, 1, 1, -1008, -271606]$ |
\(y^2+y=x^3+x^2-1008x-271606\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 390225.g1 |
390225g1 |
390225.g |
390225g |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$2.354054088$ |
$1$ |
|
$0$ |
$39536640$ |
$2.846130$ |
$-645008376471556096/783675$ |
$1.01002$ |
$5.05279$ |
$[0, 1, 1, -54451008, 154634370644]$ |
\(y^2+y=x^3+x^2-54451008x+154634370644\) |
86.2.0.? |
$[(17037/2, 671/2)]$ |
$1$ |
| 390225.h1 |
390225h1 |
390225.h |
390225h |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{3} \cdot 5^{6} \cdot 11^{10} \cdot 43^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$120434688$ |
$3.256660$ |
$-104398970368000/92307627$ |
$0.99019$ |
$5.11992$ |
$[0, 1, 1, -72594958, 238229319994]$ |
\(y^2+y=x^3+x^2-72594958x+238229319994\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 390225.i1 |
390225i1 |
390225.i |
390225i |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{12} \cdot 5^{3} \cdot 11^{2} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$860$ |
$2$ |
$0$ |
$1.159092978$ |
$1$ |
|
$4$ |
$354816$ |
$0.908230$ |
$48431681309/22851963$ |
$0.97568$ |
$2.65856$ |
$[1, 1, 1, -1878, -14244]$ |
\(y^2+xy+y=x^3+x^2-1878x-14244\) |
860.2.0.? |
$[(64, 332)]$ |
$1$ |
| 390225.j1 |
390225j1 |
390225.j |
390225j |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{12} \cdot 5^{6} \cdot 11^{8} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$1720$ |
$4$ |
$0$ |
$0.370515904$ |
$1$ |
|
$6$ |
$22581504$ |
$2.820618$ |
$-664121606137/982634409$ |
$0.93501$ |
$4.45302$ |
$[1, 0, 0, -2719538, 3255271317]$ |
\(y^2+xy=x^3-2719538x+3255271317\) |
4.2.0.a.1, 1720.4.0.? |
$[(-1079, 70780)]$ |
$1$ |
| 390225.k1 |
390225k1 |
390225.k |
390225k |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3 \cdot 5^{8} \cdot 11^{7} \cdot 43^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$2.277757465$ |
$1$ |
|
$8$ |
$3744000$ |
$1.878649$ |
$86869895/61017$ |
$0.78659$ |
$3.53745$ |
$[1, 0, 0, 81612, -4141983]$ |
\(y^2+xy=x^3+81612x-4141983\) |
132.2.0.? |
$[(527, 13349), (77, 1574)]$ |
$1$ |
| 390225.l1 |
390225l1 |
390225.l |
390225l |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{11} \cdot 5^{6} \cdot 11^{3} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2838$ |
$2$ |
$0$ |
$1.183565131$ |
$1$ |
|
$4$ |
$1140480$ |
$1.410807$ |
$-2232681443/7617321$ |
$1.00856$ |
$3.13082$ |
$[1, 0, 0, -7488, -655533]$ |
\(y^2+xy=x^3-7488x-655533\) |
2838.2.0.? |
$[(153, 1260)]$ |
$1$ |
| 390225.m1 |
390225m5 |
390225.m |
390225m |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{2} \cdot 5^{9} \cdot 11^{22} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.6 |
2B |
$113520$ |
$192$ |
$1$ |
$24.67281827$ |
$1$ |
|
$0$ |
$1654456320$ |
$5.125565$ |
$416616611666950281482007841/95581181832463041400125$ |
$1.01503$ |
$6.62848$ |
$[1, 0, 0, -47068425313, 3053525841989492]$ |
\(y^2+xy=x^3-47068425313x+3053525841989492\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 10.6.0.a.1, 16.24.0.f.2, $\ldots$ |
$[(-7552304866637/7947, 41937385840160029507/7947)]$ |
$1$ |
| 390225.m2 |
390225m3 |
390225.m |
390225m |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{12} \cdot 11^{14} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.13 |
2Cs |
$56760$ |
$192$ |
$1$ |
$49.34563654$ |
$1$ |
|
$2$ |
$827228160$ |
$4.778992$ |
$15186826139801079013917841/927513732725877515625$ |
$1.00275$ |
$6.37125$ |
$[1, 0, 0, -15606534688, -709725281338633]$ |
\(y^2+xy=x^3-15606534688x-709725281338633\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.2, 20.24.0.c.1, 40.48.0.j.1, $\ldots$ |
$[(340985975901334679354687/1247431751, 154987281898122769902708671687080594/1247431751)]$ |
$1$ |
| 390225.m3 |
390225m2 |
390225.m |
390225m |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{2} \cdot 5^{18} \cdot 11^{10} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.15 |
2Cs |
$56760$ |
$192$ |
$1$ |
$98.69127309$ |
$1$ |
|
$2$ |
$413614080$ |
$4.432419$ |
$14507303188240634702667841/59482636962890625$ |
$1.00166$ |
$6.36769$ |
$[1, 0, 0, -15370206563, -733443880948008]$ |
\(y^2+xy=x^3-15370206563x-733443880948008\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.1, 40.48.0.v.1, 88.48.0.?, $\ldots$ |
$[(-831350100038418450580411431304962872037078047/107816060294949739041, 98456858208553794295113189414679655131116794250356563419851811890/107816060294949739041)]$ |
$1$ |
| 390225.m4 |
390225m1 |
390225.m |
390225m |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3 \cdot 5^{12} \cdot 11^{8} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.7 |
2B |
$113520$ |
$192$ |
$1$ |
$197.3825461$ |
$1$ |
|
$1$ |
$206807040$ |
$4.085846$ |
$14507260360694257864644721/243890625$ |
$1.00166$ |
$6.36769$ |
$[1, 0, 0, -15370191438, -733445396609133]$ |
\(y^2+xy=x^3-15370191438x-733445396609133\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.f.1, 40.24.0.cb.2, $\ldots$ |
$[(201699590598409007075898888961195389341098533205964507954647954589281223311792311908783/29432684018820804867150602626223618279117, 2321334230450396813725773215221547637848231250922663063752725168071017200454308621410579549677344146117093904007493557572714753032/29432684018820804867150602626223618279117)]$ |
$1$ |
| 390225.m5 |
390225m4 |
390225.m |
390225m |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3 \cdot 5^{30} \cdot 11^{8} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.92 |
2B |
$113520$ |
$192$ |
$1$ |
$197.3825461$ |
$1$ |
|
$0$ |
$827228160$ |
$4.778992$ |
$-13849022871631906434117361/930368900299072265625$ |
$1.00247$ |
$6.37261$ |
$[1, 0, 0, -15134120438, -757065478184883]$ |
\(y^2+xy=x^3-15134120438x-757065478184883\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 80.48.0.?, 176.48.0.?, $\ldots$ |
$[(535849048253028263153103986147233593951924156708124946001250310312087998686935434727572/24851403462834706824081990280465978754763, 12264818007019208243999366049075773415009782291708966046160668773911575425598890171621228079482082665840439991603262971139040453505/24851403462834706824081990280465978754763)]$ |
$1$ |
| 390225.m6 |
390225m6 |
390225.m |
390225m |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{8} \cdot 5^{9} \cdot 11^{10} \cdot 43^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.91 |
2B |
$113520$ |
$192$ |
$1$ |
$24.67281827$ |
$1$ |
|
$0$ |
$1654456320$ |
$5.125565$ |
$7032545021242745074172159/140345481884305162150125$ |
$1.02984$ |
$6.58416$ |
$[1, 0, 0, 12074105937, -2954985084354258]$ |
\(y^2+xy=x^3+12074105937x-2954985084354258\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 20.12.0.h.1, 40.48.0.bm.2, $\ldots$ |
$[(2910013320027/3889, 4733178572526902436/3889)]$ |
$1$ |
| 390225.n1 |
390225n2 |
390225.n |
390225n |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{2} \cdot 5^{12} \cdot 11^{7} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$9460$ |
$12$ |
$0$ |
$5.905186364$ |
$1$ |
|
$0$ |
$9953280$ |
$2.518951$ |
$7962857630209/2860171875$ |
$0.87808$ |
$4.17491$ |
$[1, 0, 0, -1258463, -334771458]$ |
\(y^2+xy=x^3-1258463x-334771458\) |
2.3.0.a.1, 44.6.0.a.1, 860.6.0.?, 9460.12.0.? |
$[(26077/4, 2769721/4)]$ |
$1$ |
| 390225.n2 |
390225n1 |
390225.n |
390225n |
$2$ |
$2$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{4} \cdot 5^{9} \cdot 11^{8} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$9460$ |
$12$ |
$0$ |
$2.952593182$ |
$1$ |
|
$3$ |
$4976640$ |
$2.172379$ |
$54483042671/52680375$ |
$0.84223$ |
$3.78774$ |
$[1, 0, 0, 238912, -36793833]$ |
\(y^2+xy=x^3+238912x-36793833\) |
2.3.0.a.1, 44.6.0.b.1, 430.6.0.?, 9460.12.0.? |
$[(382, 10309)]$ |
$1$ |
| 390225.o1 |
390225o1 |
390225.o |
390225o |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{9} \cdot 11^{2} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$860$ |
$2$ |
$0$ |
$1.074661256$ |
$1$ |
|
$4$ |
$691200$ |
$1.112934$ |
$53189206081/435375$ |
$0.84191$ |
$3.04086$ |
$[1, 0, 0, -9688, 363617]$ |
\(y^2+xy=x^3-9688x+363617\) |
860.2.0.? |
$[(47, 89)]$ |
$1$ |
| 390225.p1 |
390225p4 |
390225.p |
390225p |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{2} \cdot 5^{7} \cdot 11^{8} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.93 |
2B |
$37840$ |
$192$ |
$1$ |
$40.77764633$ |
$4$ |
$2$ |
$0$ |
$117964800$ |
$3.700745$ |
$215337138023212870452481/234135$ |
$1.02558$ |
$6.04067$ |
$[1, 0, 0, -3777378063, -89358387712758]$ |
\(y^2+xy=x^3-3777378063x-89358387712758\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 80.48.0.?, 176.48.0.?, $\ldots$ |
$[(1925479303568588158/4233333, 2066777558987696080160916568/4233333)]$ |
$1$ |
| 390225.p2 |
390225p5 |
390225.p |
390225p |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{8} \cdot 11^{7} \cdot 43^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.94 |
2B |
$37840$ |
$192$ |
$1$ |
$5.097205791$ |
$1$ |
|
$2$ |
$235929600$ |
$4.047318$ |
$758850244829023683601/260354661183562275$ |
$0.97767$ |
$5.60196$ |
$[1, 0, 0, -574825688, 3384678897117]$ |
\(y^2+xy=x^3-574825688x+3384678897117\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 20.12.0-4.c.1.2, 40.48.0-40.cb.1.5, $\ldots$ |
$[(-22793, 2166709)]$ |
$1$ |
| 390225.p3 |
390225p3 |
390225.p |
390225p |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{8} \cdot 5^{10} \cdot 11^{8} \cdot 43^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.11 |
2Cs |
$18920$ |
$192$ |
$1$ |
$10.19441158$ |
$1$ |
|
$2$ |
$117964800$ |
$3.700745$ |
$53804702959424445601/1696325722925625$ |
$0.95864$ |
$5.39640$ |
$[1, 0, 0, -237916313, -1373492206008]$ |
\(y^2+xy=x^3-237916313x-1373492206008\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.8, 20.24.0-4.b.1.2, 40.48.0-40.i.2.29, $\ldots$ |
$[(-5911871/25, 2809776208/25)]$ |
$1$ |
| 390225.p4 |
390225p2 |
390225.p |
390225p |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{8} \cdot 11^{10} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.14 |
2Cs |
$18920$ |
$192$ |
$1$ |
$20.38882316$ |
$1$ |
|
$2$ |
$58982400$ |
$3.354172$ |
$52572582932532371281/54819198225$ |
$0.99898$ |
$5.39460$ |
$[1, 0, 0, -236086188, -1396238829633]$ |
\(y^2+xy=x^3-236086188x-1396238829633\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.10, 40.48.0-40.i.1.8, 88.48.0.?, $\ldots$ |
$[(8042770947/551, 551111065106289/551)]$ |
$1$ |
| 390225.p5 |
390225p1 |
390225.p |
390225p |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{2} \cdot 5^{7} \cdot 11^{14} \cdot 43 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.8 |
2B |
$37840$ |
$192$ |
$1$ |
$40.77764633$ |
$1$ |
|
$1$ |
$29491200$ |
$3.007599$ |
$-12539072261612161/414784434735$ |
$0.91713$ |
$4.75104$ |
$[1, 0, 0, -14641063, -22171829008]$ |
\(y^2+xy=x^3-14641063x-22171829008\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.2, 40.24.0.cb.2, $\ldots$ |
$[(1917695459368067497/17019839, 2022742359720941751237091946/17019839)]$ |
$1$ |
| 390225.p6 |
390225p6 |
390225.p |
390225p |
$6$ |
$8$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{16} \cdot 5^{14} \cdot 11^{7} \cdot 43^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.9 |
2B |
$37840$ |
$192$ |
$1$ |
$5.097205791$ |
$1$ |
|
$2$ |
$235929600$ |
$4.047318$ |
$1353482583458377679/342002835319921875$ |
$1.00926$ |
$5.58236$ |
$[1, 0, 0, 69711062, -4675872076633]$ |
\(y^2+xy=x^3+69711062x-4675872076633\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.4, 20.12.0-4.c.1.1, $\ldots$ |
$[(24797, 3494789)]$ |
$1$ |
| 390225.q1 |
390225q1 |
390225.q |
390225q |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{3} \cdot 5^{4} \cdot 11^{9} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$2.245344687$ |
$1$ |
|
$0$ |
$3006720$ |
$1.926912$ |
$-38320214425/66447513$ |
$0.87340$ |
$3.61799$ |
$[1, 0, 0, -72663, -15077358]$ |
\(y^2+xy=x^3-72663x-15077358\) |
132.2.0.? |
$[(7839/2, 678957/2)]$ |
$1$ |
| 390225.r1 |
390225r1 |
390225.r |
390225r |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{12} \cdot 5^{9} \cdot 11^{8} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$860$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19514880$ |
$2.911896$ |
$48431681309/22851963$ |
$0.97568$ |
$4.52613$ |
$[1, 0, 0, -5681013, 2239152642]$ |
\(y^2+xy=x^3-5681013x+2239152642\) |
860.2.0.? |
$[ ]$ |
$1$ |
| 390225.s1 |
390225s1 |
390225.s |
390225s |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{7} \cdot 5^{2} \cdot 11^{7} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.722690949$ |
$1$ |
|
$4$ |
$6854400$ |
$2.324757$ |
$-225812574787268065/44481393$ |
$0.94414$ |
$4.47123$ |
$[1, 0, 0, -4488558, 3659856597]$ |
\(y^2+xy=x^3-4488558x+3659856597\) |
132.2.0.? |
$[(813, 23007)]$ |
$1$ |
| 390225.t1 |
390225t1 |
390225.t |
390225t |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{12} \cdot 5^{14} \cdot 11^{6} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$43868160$ |
$3.169426$ |
$660867352100864/8926548046875$ |
$1.07121$ |
$4.75941$ |
$[0, -1, 1, 5489367, -23399865457]$ |
\(y^2+y=x^3-x^2+5489367x-23399865457\) |
86.2.0.? |
$[ ]$ |
$1$ |
| 390225.u1 |
390225u2 |
390225.u |
390225u |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{2} \cdot 5^{10} \cdot 11^{6} \cdot 43^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$1.282704651$ |
$1$ |
|
$4$ |
$8812800$ |
$2.632069$ |
$-1971080396800/715563$ |
$1.03023$ |
$4.56655$ |
$[0, -1, 1, -6755833, 6763123443]$ |
\(y^2+y=x^3-x^2-6755833x+6763123443\) |
3.4.0.a.1, 86.2.0.?, 165.8.0.?, 258.8.0.?, 14190.16.0.? |
$[(1533, 2601)]$ |
$1$ |
| 390225.u2 |
390225u1 |
390225.u |
390225u |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5^{10} \cdot 11^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$14190$ |
$16$ |
$0$ |
$3.848113955$ |
$1$ |
|
$2$ |
$2937600$ |
$2.082764$ |
$819200/31347$ |
$0.97636$ |
$3.74960$ |
$[0, -1, 1, 50417, 35145318]$ |
\(y^2+y=x^3-x^2+50417x+35145318\) |
3.4.0.a.1, 86.2.0.?, 165.8.0.?, 258.8.0.?, 14190.16.0.? |
$[(-84, 5505)]$ |
$1$ |
| 390225.v1 |
390225v2 |
390225.v |
390225v |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{2} \cdot 5^{4} \cdot 11^{6} \cdot 43^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2838$ |
$16$ |
$0$ |
$3.523180514$ |
$1$ |
|
$8$ |
$1762560$ |
$1.827351$ |
$-1971080396800/715563$ |
$1.03023$ |
$3.81649$ |
$[0, 1, 1, -270233, 53996894]$ |
\(y^2+y=x^3+x^2-270233x+53996894\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 86.2.0.?, 258.8.0.?, 2838.16.0.? |
$[(304, 181), (282, 544)]$ |
$1$ |
| 390225.v2 |
390225v1 |
390225.v |
390225v |
$2$ |
$3$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{6} \cdot 5^{4} \cdot 11^{6} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2838$ |
$16$ |
$0$ |
$0.391464501$ |
$1$ |
|
$16$ |
$587520$ |
$1.278044$ |
$819200/31347$ |
$0.97636$ |
$2.99954$ |
$[0, 1, 1, 2017, 281969]$ |
\(y^2+y=x^3+x^2+2017x+281969\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 86.2.0.?, 258.8.0.?, 2838.16.0.? |
$[(73, 907), (7, 544)]$ |
$1$ |
| 390225.w1 |
390225w1 |
390225.w |
390225w |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{4} \cdot 5^{6} \cdot 11^{6} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$86$ |
$2$ |
$0$ |
$5.716506920$ |
$1$ |
|
$2$ |
$1218560$ |
$1.536552$ |
$-799178752/3483$ |
$0.95634$ |
$3.46038$ |
$[0, 1, 1, -58483, -5483681]$ |
\(y^2+y=x^3+x^2-58483x-5483681\) |
86.2.0.? |
$[(3323, 191062)]$ |
$1$ |
| 390225.x1 |
390225x1 |
390225.x |
390225x |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{11} \cdot 5^{7} \cdot 11^{2} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1290$ |
$2$ |
$0$ |
$0.626472077$ |
$1$ |
|
$12$ |
$887040$ |
$1.366877$ |
$140220399616/38086605$ |
$0.88553$ |
$3.11616$ |
$[0, 1, 1, -13383, 429644]$ |
\(y^2+y=x^3+x^2-13383x+429644\) |
1290.2.0.? |
$[(-72, 1012), (198, 2362)]$ |
$1$ |
| 390225.y1 |
390225y1 |
390225.y |
390225y |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{11} \cdot 5^{7} \cdot 11^{8} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1290$ |
$2$ |
$0$ |
$0.484068333$ |
$1$ |
|
$4$ |
$9757440$ |
$2.565823$ |
$140220399616/38086605$ |
$0.88553$ |
$4.23367$ |
$[0, 1, 1, -1619383, -578333981]$ |
\(y^2+y=x^3+x^2-1619383x-578333981\) |
1290.2.0.? |
$[(5243, 367537)]$ |
$1$ |
| 390225.z1 |
390225z1 |
390225.z |
390225z |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{7} \cdot 5^{8} \cdot 11^{7} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34272000$ |
$3.129475$ |
$-225812574787268065/44481393$ |
$0.94414$ |
$5.22129$ |
$[1, 1, 0, -112213950, 457482074625]$ |
\(y^2+xy=x^3+x^2-112213950x+457482074625\) |
132.2.0.? |
$[ ]$ |
$1$ |
| 390225.ba1 |
390225ba1 |
390225.ba |
390225ba |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{12} \cdot 5^{3} \cdot 11^{8} \cdot 43 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$860$ |
$2$ |
$0$ |
$14.67817246$ |
$1$ |
|
$2$ |
$3902976$ |
$2.107178$ |
$48431681309/22851963$ |
$0.97568$ |
$3.77607$ |
$[1, 1, 0, -227240, 17822325]$ |
\(y^2+xy=x^3+x^2-227240x+17822325\) |
860.2.0.? |
$[(20, 3635), (-965/2, 62245/2)]$ |
$1$ |
| 390225.bb1 |
390225bb1 |
390225.bb |
390225bb |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{3} \cdot 5^{10} \cdot 11^{9} \cdot 43^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15033600$ |
$2.731632$ |
$-38320214425/66447513$ |
$0.87340$ |
$4.36805$ |
$[1, 1, 0, -1816575, -1884669750]$ |
\(y^2+xy=x^3+x^2-1816575x-1884669750\) |
132.2.0.? |
$[ ]$ |
$1$ |
| 390225.bc1 |
390225bc4 |
390225.bc |
390225bc |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{12} \cdot 5^{6} \cdot 11^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$56760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$5529600$ |
$2.220493$ |
$1616855892553/22851963$ |
$1.05806$ |
$4.05108$ |
$[1, 1, 0, -739675, -242155250]$ |
\(y^2+xy=x^3+x^2-739675x-242155250\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 172.12.0.?, 220.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 390225.bc2 |
390225bc2 |
390225.bc |
390225bc |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{6} \cdot 5^{6} \cdot 11^{6} \cdot 43^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$28380$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2764800$ |
$1.873920$ |
$2845178713/1347921$ |
$0.95310$ |
$3.55843$ |
$[1, 1, 0, -89300, 4336875]$ |
\(y^2+xy=x^3+x^2-89300x+4336875\) |
2.6.0.a.1, 12.12.0.b.1, 172.12.0.?, 220.12.0.?, 516.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 390225.bc3 |
390225bc1 |
390225.bc |
390225bc |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{3} \cdot 5^{6} \cdot 11^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$56760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1382400$ |
$1.527346$ |
$1630532233/1161$ |
$0.91317$ |
$3.51518$ |
$[1, 1, 0, -74175, 7740000]$ |
\(y^2+xy=x^3+x^2-74175x+7740000\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 258.6.0.?, 344.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 390225.bc4 |
390225bc3 |
390225.bc |
390225bc |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3^{3} \cdot 5^{6} \cdot 11^{6} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$56760$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$5529600$ |
$2.220493$ |
$129784785047/92307627$ |
$0.98681$ |
$3.85516$ |
$[1, 1, 0, 319075, 33331500]$ |
\(y^2+xy=x^3+x^2+319075x+33331500\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 220.12.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 390225.bd1 |
390225bd1 |
390225.bd |
390225bd |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( - 3 \cdot 5^{2} \cdot 11^{7} \cdot 43^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$2.548631996$ |
$1$ |
|
$2$ |
$748800$ |
$1.073931$ |
$86869895/61017$ |
$0.78659$ |
$2.78739$ |
$[1, 1, 0, 3265, -31830]$ |
\(y^2+xy=x^3+x^2+3265x-31830\) |
132.2.0.? |
$[(226, 3396)]$ |
$1$ |
| 390225.be1 |
390225be1 |
390225.be |
390225be |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{12} \cdot 5^{9} \cdot 11^{2} \cdot 43 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$860$ |
$2$ |
$0$ |
$1.290485302$ |
$1$ |
|
$2$ |
$1774080$ |
$1.712950$ |
$48431681309/22851963$ |
$0.97568$ |
$3.40862$ |
$[1, 0, 1, -46951, -1686577]$ |
\(y^2+xy+y=x^3-46951x-1686577\) |
860.2.0.? |
$[(-173, 1211)]$ |
$1$ |
| 390225.bf1 |
390225bf1 |
390225.bf |
390225bf |
$1$ |
$1$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3^{4} \cdot 5^{9} \cdot 11^{8} \cdot 43 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$860$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7603200$ |
$2.311882$ |
$53189206081/435375$ |
$0.84191$ |
$4.15838$ |
$[1, 0, 1, -1172251, -485146477]$ |
\(y^2+xy+y=x^3-1172251x-485146477\) |
860.2.0.? |
$[ ]$ |
$1$ |
| 390225.bg1 |
390225bg4 |
390225.bg |
390225bg |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3 \cdot 5^{10} \cdot 11^{6} \cdot 43 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$56760$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$5406720$ |
$2.190311$ |
$36097320816649/80625$ |
$0.94094$ |
$4.29231$ |
$[1, 0, 1, -2082776, -1157113927]$ |
\(y^2+xy+y=x^3-2082776x-1157113927\) |
2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 120.12.0.?, 258.6.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 390225.bg2 |
390225bg3 |
390225.bg |
390225bg |
$4$ |
$4$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) |
\( 3 \cdot 5^{7} \cdot 11^{6} \cdot 43^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$56760$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5406720$ |
$2.190311$ |
$184122897769/51282015$ |
$1.05622$ |
$3.88232$ |
$[1, 0, 1, -358526, 59480573]$ |
\(y^2+xy+y=x^3-358526x+59480573\) |
2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 60.12.0.h.1, 660.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |