Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 63 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
390225.a1 390225.a \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.296722999$ $[0, -1, 1, -3208, 66318]$ \(y^2+y=x^3-x^2-3208x+66318\) 1290.2.0.? $[(42, 62)]$
390225.b1 390225.b \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -569708, -167348182]$ \(y^2+y=x^3-x^2-569708x-167348182\) 86.2.0.? $[ ]$
390225.c1 390225.c \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 29242, -6829582]$ \(y^2+y=x^3-x^2+29242x-6829582\) 86.2.0.? $[ ]$
390225.d1 390225.d \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $1.083800563$ $[0, 1, 1, -15528, -699946]$ \(y^2+y=x^3+x^2-15528x-699946\) 1290.2.0.? $[(-81, 181), (1008, 31762)]$
390225.e1 390225.e \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 610042, -214006006]$ \(y^2+y=x^3+x^2+610042x-214006006\) 6.2.0.a.1 $[ ]$
390225.f1 390225.f \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -1008, -271606]$ \(y^2+y=x^3+x^2-1008x-271606\) 6.2.0.a.1 $[ ]$
390225.g1 390225.g \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.354054088$ $[0, 1, 1, -54451008, 154634370644]$ \(y^2+y=x^3+x^2-54451008x+154634370644\) 86.2.0.? $[(17037/2, 671/2)]$
390225.h1 390225.h \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -72594958, 238229319994]$ \(y^2+y=x^3+x^2-72594958x+238229319994\) 6.2.0.a.1 $[ ]$
390225.i1 390225.i \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.159092978$ $[1, 1, 1, -1878, -14244]$ \(y^2+xy+y=x^3+x^2-1878x-14244\) 860.2.0.? $[(64, 332)]$
390225.j1 390225.j \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $0.370515904$ $[1, 0, 0, -2719538, 3255271317]$ \(y^2+xy=x^3-2719538x+3255271317\) 4.2.0.a.1, 1720.4.0.? $[(-1079, 70780)]$
390225.k1 390225.k \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $2.277757465$ $[1, 0, 0, 81612, -4141983]$ \(y^2+xy=x^3+81612x-4141983\) 132.2.0.? $[(527, 13349), (77, 1574)]$
390225.l1 390225.l \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.183565131$ $[1, 0, 0, -7488, -655533]$ \(y^2+xy=x^3-7488x-655533\) 2838.2.0.? $[(153, 1260)]$
390225.m1 390225.m \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $24.67281827$ $[1, 0, 0, -47068425313, 3053525841989492]$ \(y^2+xy=x^3-47068425313x+3053525841989492\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 10.6.0.a.1, 16.24.0.f.2, $\ldots$ $[(-7552304866637/7947, 41937385840160029507/7947)]$
390225.m2 390225.m \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $49.34563654$ $[1, 0, 0, -15606534688, -709725281338633]$ \(y^2+xy=x^3-15606534688x-709725281338633\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.2, 20.24.0.c.1, 40.48.0.j.1, $\ldots$ $[(340985975901334679354687/1247431751, 154987281898122769902708671687080594/1247431751)]$
390225.m3 390225.m \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $98.69127309$ $[1, 0, 0, -15370206563, -733443880948008]$ \(y^2+xy=x^3-15370206563x-733443880948008\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.1, 40.48.0.v.1, 88.48.0.?, $\ldots$ $[(-831350100038418450580411431304962872037078047/107816060294949739041, 98456858208553794295113189414679655131116794250356563419851811890/107816060294949739041)]$
390225.m4 390225.m \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $197.3825461$ $[1, 0, 0, -15370191438, -733445396609133]$ \(y^2+xy=x^3-15370191438x-733445396609133\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.f.1, 40.24.0.cb.2, $\ldots$ $[(201699590598409007075898888961195389341098533205964507954647954589281223311792311908783/29432684018820804867150602626223618279117, 2321334230450396813725773215221547637848231250922663063752725168071017200454308621410579549677344146117093904007493557572714753032/29432684018820804867150602626223618279117)]$
390225.m5 390225.m \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $197.3825461$ $[1, 0, 0, -15134120438, -757065478184883]$ \(y^2+xy=x^3-15134120438x-757065478184883\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 80.48.0.?, 176.48.0.?, $\ldots$ $[(535849048253028263153103986147233593951924156708124946001250310312087998686935434727572/24851403462834706824081990280465978754763, 12264818007019208243999366049075773415009782291708966046160668773911575425598890171621228079482082665840439991603262971139040453505/24851403462834706824081990280465978754763)]$
390225.m6 390225.m \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $24.67281827$ $[1, 0, 0, 12074105937, -2954985084354258]$ \(y^2+xy=x^3+12074105937x-2954985084354258\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 20.12.0.h.1, 40.48.0.bm.2, $\ldots$ $[(2910013320027/3889, 4733178572526902436/3889)]$
390225.n1 390225.n \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $5.905186364$ $[1, 0, 0, -1258463, -334771458]$ \(y^2+xy=x^3-1258463x-334771458\) 2.3.0.a.1, 44.6.0.a.1, 860.6.0.?, 9460.12.0.? $[(26077/4, 2769721/4)]$
390225.n2 390225.n \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.952593182$ $[1, 0, 0, 238912, -36793833]$ \(y^2+xy=x^3+238912x-36793833\) 2.3.0.a.1, 44.6.0.b.1, 430.6.0.?, 9460.12.0.? $[(382, 10309)]$
390225.o1 390225.o \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.074661256$ $[1, 0, 0, -9688, 363617]$ \(y^2+xy=x^3-9688x+363617\) 860.2.0.? $[(47, 89)]$
390225.p1 390225.p \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $40.77764633$ $[1, 0, 0, -3777378063, -89358387712758]$ \(y^2+xy=x^3-3777378063x-89358387712758\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.5, 80.48.0.?, 176.48.0.?, $\ldots$ $[(1925479303568588158/4233333, 2066777558987696080160916568/4233333)]$
390225.p2 390225.p \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $5.097205791$ $[1, 0, 0, -574825688, 3384678897117]$ \(y^2+xy=x^3-574825688x+3384678897117\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 20.12.0-4.c.1.2, 40.48.0-40.cb.1.5, $\ldots$ $[(-22793, 2166709)]$
390225.p3 390225.p \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.19441158$ $[1, 0, 0, -237916313, -1373492206008]$ \(y^2+xy=x^3-237916313x-1373492206008\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.8, 20.24.0-4.b.1.2, 40.48.0-40.i.2.29, $\ldots$ $[(-5911871/25, 2809776208/25)]$
390225.p4 390225.p \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $20.38882316$ $[1, 0, 0, -236086188, -1396238829633]$ \(y^2+xy=x^3-236086188x-1396238829633\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.10, 40.48.0-40.i.1.8, 88.48.0.?, $\ldots$ $[(8042770947/551, 551111065106289/551)]$
390225.p5 390225.p \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $40.77764633$ $[1, 0, 0, -14641063, -22171829008]$ \(y^2+xy=x^3-14641063x-22171829008\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.2, 40.24.0.cb.2, $\ldots$ $[(1917695459368067497/17019839, 2022742359720941751237091946/17019839)]$
390225.p6 390225.p \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\Z/2\Z$ $5.097205791$ $[1, 0, 0, 69711062, -4675872076633]$ \(y^2+xy=x^3+69711062x-4675872076633\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.4, 20.12.0-4.c.1.1, $\ldots$ $[(24797, 3494789)]$
390225.q1 390225.q \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.245344687$ $[1, 0, 0, -72663, -15077358]$ \(y^2+xy=x^3-72663x-15077358\) 132.2.0.? $[(7839/2, 678957/2)]$
390225.r1 390225.r \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -5681013, 2239152642]$ \(y^2+xy=x^3-5681013x+2239152642\) 860.2.0.? $[ ]$
390225.s1 390225.s \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $0.722690949$ $[1, 0, 0, -4488558, 3659856597]$ \(y^2+xy=x^3-4488558x+3659856597\) 132.2.0.? $[(813, 23007)]$
390225.t1 390225.t \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 5489367, -23399865457]$ \(y^2+y=x^3-x^2+5489367x-23399865457\) 86.2.0.? $[ ]$
390225.u1 390225.u \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.282704651$ $[0, -1, 1, -6755833, 6763123443]$ \(y^2+y=x^3-x^2-6755833x+6763123443\) 3.4.0.a.1, 86.2.0.?, 165.8.0.?, 258.8.0.?, 14190.16.0.? $[(1533, 2601)]$
390225.u2 390225.u \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $3.848113955$ $[0, -1, 1, 50417, 35145318]$ \(y^2+y=x^3-x^2+50417x+35145318\) 3.4.0.a.1, 86.2.0.?, 165.8.0.?, 258.8.0.?, 14190.16.0.? $[(-84, 5505)]$
390225.v1 390225.v \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $3.523180514$ $[0, 1, 1, -270233, 53996894]$ \(y^2+y=x^3+x^2-270233x+53996894\) 3.4.0.a.1, 33.8.0-3.a.1.1, 86.2.0.?, 258.8.0.?, 2838.16.0.? $[(304, 181), (282, 544)]$
390225.v2 390225.v \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $0.391464501$ $[0, 1, 1, 2017, 281969]$ \(y^2+y=x^3+x^2+2017x+281969\) 3.4.0.a.1, 33.8.0-3.a.1.2, 86.2.0.?, 258.8.0.?, 2838.16.0.? $[(73, 907), (7, 544)]$
390225.w1 390225.w \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $5.716506920$ $[0, 1, 1, -58483, -5483681]$ \(y^2+y=x^3+x^2-58483x-5483681\) 86.2.0.? $[(3323, 191062)]$
390225.x1 390225.x \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $0.626472077$ $[0, 1, 1, -13383, 429644]$ \(y^2+y=x^3+x^2-13383x+429644\) 1290.2.0.? $[(-72, 1012), (198, 2362)]$
390225.y1 390225.y \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $0.484068333$ $[0, 1, 1, -1619383, -578333981]$ \(y^2+y=x^3+x^2-1619383x-578333981\) 1290.2.0.? $[(5243, 367537)]$
390225.z1 390225.z \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -112213950, 457482074625]$ \(y^2+xy=x^3+x^2-112213950x+457482074625\) 132.2.0.? $[ ]$
390225.ba1 390225.ba \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $14.67817246$ $[1, 1, 0, -227240, 17822325]$ \(y^2+xy=x^3+x^2-227240x+17822325\) 860.2.0.? $[(20, 3635), (-965/2, 62245/2)]$
390225.bb1 390225.bb \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1816575, -1884669750]$ \(y^2+xy=x^3+x^2-1816575x-1884669750\) 132.2.0.? $[ ]$
390225.bc1 390225.bc \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -739675, -242155250]$ \(y^2+xy=x^3+x^2-739675x-242155250\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 172.12.0.?, 220.12.0.?, $\ldots$ $[ ]$
390225.bc2 390225.bc \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -89300, 4336875]$ \(y^2+xy=x^3+x^2-89300x+4336875\) 2.6.0.a.1, 12.12.0.b.1, 172.12.0.?, 220.12.0.?, 516.24.0.?, $\ldots$ $[ ]$
390225.bc3 390225.bc \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -74175, 7740000]$ \(y^2+xy=x^3+x^2-74175x+7740000\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 258.6.0.?, 344.12.0.?, $\ldots$ $[ ]$
390225.bc4 390225.bc \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 319075, 33331500]$ \(y^2+xy=x^3+x^2+319075x+33331500\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 220.12.0.?, $\ldots$ $[ ]$
390225.bd1 390225.bd \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.548631996$ $[1, 1, 0, 3265, -31830]$ \(y^2+xy=x^3+x^2+3265x-31830\) 132.2.0.? $[(226, 3396)]$
390225.be1 390225.be \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.290485302$ $[1, 0, 1, -46951, -1686577]$ \(y^2+xy+y=x^3-46951x-1686577\) 860.2.0.? $[(-173, 1211)]$
390225.bf1 390225.bf \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1172251, -485146477]$ \(y^2+xy+y=x^3-1172251x-485146477\) 860.2.0.? $[ ]$
390225.bg1 390225.bg \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2082776, -1157113927]$ \(y^2+xy+y=x^3-2082776x-1157113927\) 2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 120.12.0.?, 258.6.0.?, $\ldots$ $[ ]$
390225.bg2 390225.bg \( 3 \cdot 5^{2} \cdot 11^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -358526, 59480573]$ \(y^2+xy+y=x^3-358526x+59480573\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 60.12.0.h.1, 660.24.0.?, $\ldots$ $[ ]$
Next   displayed columns for results