Properties

Label 390.e
Number of curves $2$
Conductor $390$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 390.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
390.e1 390e2 \([1, 1, 1, -46, -127]\) \(10779215329/1232010\) \(1232010\) \([2]\) \(96\) \(-0.099044\)  
390.e2 390e1 \([1, 1, 1, 4, -7]\) \(6967871/35100\) \(-35100\) \([2]\) \(48\) \(-0.44562\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 390.e have rank \(0\).

Complex multiplication

The elliptic curves in class 390.e do not have complex multiplication.

Modular form 390.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 2q^{7} + q^{8} + q^{9} - q^{10} + 4q^{11} - q^{12} - q^{13} + 2q^{14} + q^{15} + q^{16} + 8q^{17} + q^{18} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.