Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 38a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
38.a3 | 38a1 | \([1, 0, 1, 9, 90]\) | \(94196375/3511808\) | \(-3511808\) | \([3]\) | \(6\) | \(-0.064137\) | \(\Gamma_0(N)\)-optimal |
38.a1 | 38a2 | \([1, 0, 1, -86, -2456]\) | \(-69173457625/2550136832\) | \(-2550136832\) | \([]\) | \(18\) | \(0.48517\) | |
38.a2 | 38a3 | \([1, 0, 1, -16, 22]\) | \(-413493625/152\) | \(-152\) | \([3]\) | \(18\) | \(-0.61344\) |
Rank
sage: E.rank()
The elliptic curves in class 38a have rank \(0\).
Complex multiplication
The elliptic curves in class 38a do not have complex multiplication.Modular form 38.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 1 & 9 \\ 3 & 9 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.