Properties

Label 388080oq
Number of curves $2$
Conductor $388080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("oq1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 388080oq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
388080.oq2 388080oq1 [0, 0, 0, -63082992, -225841753424] [] 92160000 \(\Gamma_0(N)\)-optimal
388080.oq1 388080oq2 [0, 0, 0, -189032592, 18912291835696] [] 460800000  

Rank

sage: E.rank()
 

The elliptic curves in class 388080oq have rank \(0\).

Complex multiplication

The elliptic curves in class 388080oq do not have complex multiplication.

Modular form 388080.2.a.oq

sage: E.q_eigenform(10)
 
\( q + q^{5} + q^{11} + 6q^{13} - 7q^{17} - 5q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.