Properties

Label 388080bc
Number of curves $4$
Conductor $388080$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bc1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 388080bc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
388080.bc3 388080bc1 \([0, 0, 0, -1173648, -496640333]\) \(-130287139815424/2250652635\) \(-3088475939558061360\) \([2]\) \(7962624\) \(2.3458\) \(\Gamma_0(N)\)-optimal
388080.bc2 388080bc2 \([0, 0, 0, -18855543, -31514220542]\) \(33766427105425744/9823275\) \(215681073220166400\) \([2]\) \(15925248\) \(2.6924\)  
388080.bc4 388080bc3 \([0, 0, 0, 4541712, -2379994337]\) \(7549996227362816/6152409907875\) \(-8442693321606497646000\) \([2]\) \(23887872\) \(2.8951\)  
388080.bc1 388080bc4 \([0, 0, 0, -21871983, -20758643318]\) \(52702650535889104/22020583921875\) \(483486736674351564000000\) \([2]\) \(47775744\) \(3.2417\)  

Rank

sage: E.rank()
 

The elliptic curves in class 388080bc have rank \(0\).

Complex multiplication

The elliptic curves in class 388080bc do not have complex multiplication.

Modular form 388080.2.a.bc

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{11} - 2q^{13} - 6q^{17} + 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.