Properties

Label 3872.m
Number of curves $1$
Conductor $3872$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("m1")
 
E.isogeny_class()
 

Elliptic curves in class 3872.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3872.m1 3872f1 \([0, 0, 0, 968, 149072]\) \(13824/1331\) \(-9658153742336\) \([]\) \(11520\) \(1.1710\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3872.m1 has rank \(0\).

Complex multiplication

The elliptic curves in class 3872.m do not have complex multiplication.

Modular form 3872.2.a.m

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} + q^{5} + 6 q^{9} + 6 q^{13} + 3 q^{15} + 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display