Show commands for:
SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()
Elliptic curves in class 3870.z
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
3870.z1 | 3870y3 | [1, -1, 1, -7547, -248731] | [2] | 6144 | |
3870.z2 | 3870y2 | [1, -1, 1, -797, 2369] | [2, 2] | 3072 | |
3870.z3 | 3870y1 | [1, -1, 1, -617, 6041] | [4] | 1536 | \(\Gamma_0(N)\)-optimal |
3870.z4 | 3870y4 | [1, -1, 1, 3073, 16301] | [2] | 6144 |
Rank
sage: E.rank()
The elliptic curves in class 3870.z have rank \(0\).
Complex multiplication
The elliptic curves in class 3870.z do not have complex multiplication.Modular form 3870.2.a.z
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.