Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 3864d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3864.e2 | 3864d1 | \([0, 1, 0, 128, -592]\) | \(224727548/299943\) | \(-307141632\) | \([2]\) | \(1280\) | \(0.31437\) | \(\Gamma_0(N)\)-optimal |
3864.e1 | 3864d2 | \([0, 1, 0, -792, -6480]\) | \(26860713266/7394247\) | \(15143417856\) | \([2]\) | \(2560\) | \(0.66095\) |
Rank
sage: E.rank()
The elliptic curves in class 3864d have rank \(0\).
Complex multiplication
The elliptic curves in class 3864d do not have complex multiplication.Modular form 3864.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.