Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
3864.a1 |
3864b1 |
3864.a |
3864b |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( - 2^{11} \cdot 3^{5} \cdot 7^{3} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2400$ |
$0.543468$ |
$-3261064466/1917027$ |
$[0, -1, 0, -392, -4116]$ |
\(y^2=x^3-x^2-392x-4116\) |
3864.b1 |
3864a2 |
3864.b |
3864a |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{11} \cdot 3^{6} \cdot 7^{4} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$1$ |
$1$ |
|
$1$ |
$10752$ |
$1.300497$ |
$1566789944863250/925924041$ |
$[0, -1, 0, -30728, -2061972]$ |
\(y^2=x^3-x^2-30728x-2061972\) |
3864.b2 |
3864a1 |
3864.b |
3864a |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( - 2^{10} \cdot 3^{12} \cdot 7^{2} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$5376$ |
$0.953924$ |
$-416618810500/598934007$ |
$[0, -1, 0, -1568, -44100]$ |
\(y^2=x^3-x^2-1568x-44100\) |
3864.c1 |
3864c1 |
3864.c |
3864c |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( - 2^{8} \cdot 3^{7} \cdot 7 \cdot 23 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.097771173$ |
$1$ |
|
$10$ |
$1120$ |
$0.205352$ |
$128000/352107$ |
$[0, 1, 0, 7, 459]$ |
\(y^2=x^3+x^2+7x+459\) |
3864.d1 |
3864e3 |
3864.d |
3864e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{11} \cdot 3^{2} \cdot 7^{2} \cdot 23^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.58 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$8192$ |
$1.160669$ |
$369937818893666/123409881$ |
$[0, 1, 0, -18992, -1013472]$ |
\(y^2=x^3+x^2-18992x-1013472\) |
3864.d2 |
3864e4 |
3864.d |
3864e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{11} \cdot 3^{2} \cdot 7^{8} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.103 |
2B |
$1$ |
$1$ |
|
$1$ |
$8192$ |
$1.160669$ |
$48260105780546/1193313807$ |
$[0, 1, 0, -9632, 352800]$ |
\(y^2=x^3+x^2-9632x+352800\) |
3864.d3 |
3864e2 |
3864.d |
3864e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{10} \cdot 3^{4} \cdot 7^{4} \cdot 23^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.1 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$4096$ |
$0.814096$ |
$267100692772/102880449$ |
$[0, 1, 0, -1352, -11520]$ |
\(y^2=x^3+x^2-1352x-11520\) |
3864.d4 |
3864e1 |
3864.d |
3864e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{2} \cdot 23 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.50 |
2B |
$1$ |
$1$ |
|
$3$ |
$2048$ |
$0.467523$ |
$8284506032/7394247$ |
$[0, 1, 0, 268, -1152]$ |
\(y^2=x^3+x^2+268x-1152\) |
3864.e1 |
3864d2 |
3864.e |
3864d |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( 2^{11} \cdot 3^{8} \cdot 7^{2} \cdot 23 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$2560$ |
$0.660947$ |
$26860713266/7394247$ |
$[0, 1, 0, -792, -6480]$ |
\(y^2=x^3+x^2-792x-6480\) |
3864.e2 |
3864d1 |
3864.e |
3864d |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( - 2^{10} \cdot 3^{4} \cdot 7 \cdot 23^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$1280$ |
$0.314373$ |
$224727548/299943$ |
$[0, 1, 0, 128, -592]$ |
\(y^2=x^3+x^2+128x-592\) |
3864.f1 |
3864f1 |
3864.f |
3864f |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 7 \cdot 23 \) |
\( - 2^{8} \cdot 3 \cdot 7^{3} \cdot 23 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1632$ |
$0.136544$ |
$-3525581824/23667$ |
$[0, 1, 0, -201, -1173]$ |
\(y^2=x^3+x^2-201x-1173\) |