Learn more

Refine search


Results (1-50 of 62 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
3850.a1 3850.a \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $2.007191887$ $[1, 1, 0, -515720, 142338880]$ \(y^2+xy=x^3+x^2-515720x+142338880\)
3850.a2 3850.a \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $6.021575663$ $[1, 1, 0, -168520, 330093440]$ \(y^2+xy=x^3+x^2-168520x+330093440\)
3850.b1 3850.b \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -9742, -367584]$ \(y^2+xy=x^3-x^2-9742x-367584\)
3850.b2 3850.b \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -8492, -466334]$ \(y^2+xy=x^3-x^2-8492x-466334\)
3850.c1 3850.c \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 4633, 220541]$ \(y^2+xy=x^3-x^2+4633x+220541\)
3850.d1 3850.d \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -757, -4299]$ \(y^2+xy=x^3-x^2-757x-4299\)
3850.d2 3850.d \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 2443, -33099]$ \(y^2+xy=x^3-x^2+2443x-33099\)
3850.e1 3850.e \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.665855398$ $[1, -1, 0, -145867, 21437541]$ \(y^2+xy=x^3-x^2-145867x+21437541\)
3850.e2 3850.e \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.832927699$ $[1, -1, 0, -5867, 577541]$ \(y^2+xy=x^3-x^2-5867x+577541\)
3850.f1 3850.f \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -129092, -17820184]$ \(y^2+xy=x^3-x^2-129092x-17820184\)
3850.f2 3850.f \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -15092, 277816]$ \(y^2+xy=x^3-x^2-15092x+277816\)
3850.f3 3850.f \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -8092, -275184]$ \(y^2+xy=x^3-x^2-8092x-275184\)
3850.f4 3850.f \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -92, -11184]$ \(y^2+xy=x^3-x^2-92x-11184\)
3850.g1 3850.g \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.459246099$ $[1, -1, 0, -92, 366]$ \(y^2+xy=x^3-x^2-92x+366\)
3850.h1 3850.h \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.644351261$ $[1, 0, 1, 4, -2]$ \(y^2+xy+y=x^3+4x-2\)
3850.i1 3850.i \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $3.070170524$ $[1, 0, 1, -1326, 414048]$ \(y^2+xy+y=x^3-1326x+414048\)
3850.i2 3850.i \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.614034104$ $[1, 0, 1, -501, -5052]$ \(y^2+xy+y=x^3-501x-5052\)
3850.j1 3850.j \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $6.301628898$ $[1, 1, 0, -88000, -10029750]$ \(y^2+xy=x^3+x^2-88000x-10029750\)
3850.j2 3850.j \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $2.100542966$ $[1, 1, 0, -6750, 201500]$ \(y^2+xy=x^3+x^2-6750x+201500\)
3850.j3 3850.j \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $3.150814449$ $[1, 1, 0, -2250, -340000]$ \(y^2+xy=x^3+x^2-2250x-340000\)
3850.j4 3850.j \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.050271483$ $[1, 1, 0, 250, 12500]$ \(y^2+xy=x^3+x^2+250x+12500\)
3850.k1 3850.k \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $5.334980921$ $[1, 1, 0, -652900, -197575500]$ \(y^2+xy=x^3+x^2-652900x-197575500\)
3850.k2 3850.k \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.778326973$ $[1, 1, 0, -89400, 10160000]$ \(y^2+xy=x^3+x^2-89400x+10160000\)
3850.k3 3850.k \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $3.556653947$ $[1, 1, 0, -1400, 392000]$ \(y^2+xy=x^3+x^2-1400x+392000\)
3850.k4 3850.k \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $10.66996184$ $[1, 1, 0, 12600, -10570000]$ \(y^2+xy=x^3+x^2+12600x-10570000\)
3850.l1 3850.l \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -27825, 6327125]$ \(y^2+xy=x^3+x^2-27825x+6327125\)
3850.l2 3850.l \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 247175, -158947875]$ \(y^2+xy=x^3+x^2+247175x-158947875\)
3850.m1 3850.m \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1838, -30458]$ \(y^2+xy=x^3-1838x-30458\)
3850.m2 3850.m \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -88, -708]$ \(y^2+xy=x^3-88x-708\)
3850.n1 3850.n \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/3\Z$ $0.143055431$ $[1, 0, 0, -1113, 50617]$ \(y^2+xy=x^3-1113x+50617\)
3850.n2 3850.n \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.429166294$ $[1, 0, 0, 9887, -1271583]$ \(y^2+xy=x^3+9887x-1271583\)
3850.o1 3850.o \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -5863, -173283]$ \(y^2+xy=x^3-5863x-173283\)
3850.o2 3850.o \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -363, -2783]$ \(y^2+xy=x^3-363x-2783\)
3850.p1 3850.p \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 112, -219]$ \(y^2+xy+y=x^3+x^2+112x-219\)
3850.q1 3850.q \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -12513, -631469]$ \(y^2+xy+y=x^3+x^2-12513x-631469\)
3850.q2 3850.q \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/5\Z$ $1$ $[1, 1, 1, -53, 3291]$ \(y^2+xy+y=x^3+x^2-53x+3291\)
3850.r1 3850.r \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -2305, 43447]$ \(y^2+xy+y=x^3-x^2-2305x+43447\)
3850.s1 3850.s \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -522730, -145336103]$ \(y^2+xy+y=x^3-x^2-522730x-145336103\)
3850.s2 3850.s \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -54730, 1175897]$ \(y^2+xy+y=x^3-x^2-54730x+1175897\)
3850.s3 3850.s \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -32730, -2256103]$ \(y^2+xy+y=x^3-x^2-32730x-2256103\)
3850.s4 3850.s \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/4\Z$ $1$ $[1, -1, 1, -730, -80103]$ \(y^2+xy+y=x^3-x^2-730x-80103\)
3850.t1 3850.t \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $12.64897778$ $[1, -1, 1, -81666730, -284043362603]$ \(y^2+xy+y=x^3-x^2-81666730x-284043362603\)
3850.t2 3850.t \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $12.64897778$ $[1, -1, 1, -5373730, -3942310603]$ \(y^2+xy+y=x^3-x^2-5373730x-3942310603\)
3850.t3 3850.t \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.324488894$ $[1, -1, 1, -5104230, -4437112603]$ \(y^2+xy+y=x^3-x^2-5104230x-4437112603\)
3850.t4 3850.t \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/4\Z$ $3.162244447$ $[1, -1, 1, -302230, -76896603]$ \(y^2+xy+y=x^3-x^2-302230x-76896603\)
3850.u1 3850.u \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $1.073871693$ $[1, -1, 1, -11730, 491897]$ \(y^2+xy+y=x^3-x^2-11730x+491897\)
3850.u2 3850.u \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\Z/2\Z$ $0.536935846$ $[1, -1, 1, -730, 7897]$ \(y^2+xy+y=x^3-x^2-730x+7897\)
3850.v1 3850.v \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -18930, -556303]$ \(y^2+xy+y=x^3-x^2-18930x-556303\)
3850.v2 3850.v \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 61070, -4076303]$ \(y^2+xy+y=x^3-x^2+61070x-4076303\)
3850.w1 3850.w \( 2 \cdot 5^{2} \cdot 7 \cdot 11 \) $1$ $\mathsf{trivial}$ $0.144767520$ $[1, -1, 1, 185, 1727]$ \(y^2+xy+y=x^3-x^2+185x+1727\)
Next   Download to