Show commands: SageMath
Rank
The elliptic curves in class 384d have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 384d do not have complex multiplication.Modular form 384.2.a.d
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 384d
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 384.b1 | 384d1 | \([0, -1, 0, -3, 3]\) | \(16000/3\) | \(768\) | \([2]\) | \(16\) | \(-0.72845\) | \(\Gamma_0(N)\)-optimal |
| 384.b2 | 384d2 | \([0, -1, 0, 7, 9]\) | \(4000/9\) | \(-73728\) | \([2]\) | \(32\) | \(-0.38187\) |