Properties

Label 384.c
Number of curves $2$
Conductor $384$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 384.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
384.c1 384b2 \([0, -1, 0, -13, -11]\) \(16000/3\) \(49152\) \([2]\) \(32\) \(-0.38187\)  
384.c2 384b1 \([0, -1, 0, 2, -2]\) \(4000/9\) \(-1152\) \([2]\) \(16\) \(-0.72845\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 384.c have rank \(0\).

Complex multiplication

The elliptic curves in class 384.c do not have complex multiplication.

Modular form 384.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2q^{7} + q^{9} - 4q^{11} + 6q^{13} + 6q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.